BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1627554)

  • 21. Membrane fusion induced by mutual interaction of the two charge-reversed amphiphilic peptides at neutral pH.
    Murata M; Kagiwada S; Takahashi S; Ohnishi S
    J Biol Chem; 1991 Aug; 266(22):14353-8. PubMed ID: 1860844
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcytotic vesicle fusion with canalicular membranes is modulated by phospholipid species: implications for biliary lipid secretion.
    Hirano N; Tazuma S; Kajiyama G
    J Gastroenterol Hepatol; 1997 Jul; 12(7):534-9. PubMed ID: 9257247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion of liposomes due to transient and lasting perturbation induced by synthetic amphiphilic peptides.
    Zhao J; Kimura S; Imanishi Y
    Biochim Biophys Acta; 1996 Aug; 1283(1):37-44. PubMed ID: 8765092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH-dependent interaction of amphiphilic polypeptide poly(Lys-Aib-Leu-Aib) with lipid bilayer membrane.
    Kono K; Kimura S; Imanishi Y
    Biochemistry; 1990 Apr; 29(15):3631-7. PubMed ID: 2340263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles.
    Rafalski M; Ortiz A; Rockwell A; van Ginkel LC; Lear JD; DeGrado WF; Wilschut J
    Biochemistry; 1991 Oct; 30(42):10211-20. PubMed ID: 1931950
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction with phospholipid bilayers, ion channel formation, and antimicrobial activity of basic amphipathic alpha-helical model peptides of various chain lengths.
    Agawa Y; Lee S; Ono S; Aoyagi H; Ohno M; Taniguchi T; Anzai K; Kirino Y
    J Biol Chem; 1991 Oct; 266(30):20218-22. PubMed ID: 1718959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perturbation of the lipid bilayer of model membranes by synthetic signal peptides.
    Nagaraj R; Joseph M; Reddy GL
    Biochim Biophys Acta; 1987 Oct; 903(3):465-72. PubMed ID: 3311164
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of the phosphatidylserine-binding site of glyceraldehyde-3-phosphate dehydrogenase responsible for membrane fusion.
    Kaneda M; Takeuchi K; Inoue K; Umeda M
    J Biochem; 1997 Dec; 122(6):1233-40. PubMed ID: 9498570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Membrane interaction and conformational properties of the putative fusion peptide of PH-30, a protein active in sperm-egg fusion.
    Muga A; Neugebauer W; Hirama T; Surewicz WK
    Biochemistry; 1994 Apr; 33(15):4444-8. PubMed ID: 8161498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of amphipathic peptides with different alpha-helical contents on liposome-fusion.
    Lee S; Aoki R; Oishi O; Aoyagi H; Yamasaki N
    Biochim Biophys Acta; 1992 Jan; 1103(1):157-62. PubMed ID: 1730016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles.
    Düzgüneş N; Goldstein JA; Friend DS; Felgner PL
    Biochemistry; 1989 Nov; 28(23):9179-84. PubMed ID: 2605251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific interaction of the intermediate filament protein vimentin and its isolated N-terminus with negatively charged phospholipids as determined by vesicle aggregation, fusion, and leakage measurements.
    Horkovics-Kovats S; Traub P
    Biochemistry; 1990 Sep; 29(37):8652-7. PubMed ID: 2271547
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanotubules formed by highly hydrophobic amphiphilic alpha-helical peptides and natural phospholipids.
    Furuya T; Kiyota T; Lee S; Inoue T; Sugihara G; Logvinova A; Goldsmith P; Ellerby HM
    Biophys J; 2003 Mar; 84(3):1950-9. PubMed ID: 12609897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles.
    Gazit E; Boman A; Boman HG; Shai Y
    Biochemistry; 1995 Sep; 34(36):11479-88. PubMed ID: 7547876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of preferred binding domains on peptide retention behavior in reversed-phase chromatography: amphipathic alpha-helices.
    Zhou NE; Mant CT; Hodges RS
    Pept Res; 1990; 3(1):8-20. PubMed ID: 2134049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformation and interactions of bombolitin I analogues with SDS micelles and phospholipid vesicles: CD, fluorescence, two-dimensional NMR and computer simulations.
    Chorev M; Gurrath M; Behar V; Mammi S; Tonello A; Peggion E
    Biopolymers; 1995 Oct; 36(4):473-84. PubMed ID: 7578942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyhistidine mediates an acid-dependent fusion of negatively charged liposomes.
    Wang CY; Huang L
    Biochemistry; 1984 Sep; 23(19):4409-16. PubMed ID: 6487609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.