BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16275650)

  • 1. Altered HIV-1 Gag protein interactions with cyclophilin A (CypA) on the acquisition of H219Q and H219P substitutions in the CypA binding loop.
    Gatanaga H; Das D; Suzuki Y; Yeh DD; Hussain KA; Ghosh AK; Mitsuya H
    J Biol Chem; 2006 Jan; 281(2):1241-50. PubMed ID: 16275650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of HIV-1 infectivity and cyclophilin A-dependence by Gag sequence and target cell type.
    Matsuoka S; Dam E; Lecossier D; Clavel F; Hance AJ
    Retrovirology; 2009 Mar; 6():21. PubMed ID: 19254360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclophilin A complexed with a fragment of HIV-1 gag protein: insights into HIV-1 infectious activity.
    Zhao Y; Chen Y; Schutkowski M; Fischer G; Ke H
    Structure; 1997 Jan; 5(1):139-46. PubMed ID: 9016720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cells with high cyclophilin A content support replication of human immunodeficiency virus type 1 Gag mutants with decreased ability to incorporate cyclophilin A.
    Ackerson B; Rey O; Canon J; Krogstad P
    J Virol; 1998 Jan; 72(1):303-8. PubMed ID: 9420228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclophilin A interacts with HIV-1 Vpr and is required for its functional expression.
    Zander K; Sherman MP; Tessmer U; Bruns K; Wray V; Prechtel AT; Schubert E; Henklein P; Luban J; Neidleman J; Greene WC; Schubert U
    J Biol Chem; 2003 Oct; 278(44):43202-13. PubMed ID: 12881522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the secondary HIV-1 capsid binding site in the host protein cyclophilin A.
    Peng W; Shi J; Márquez CL; Lau D; Walsh J; Faysal KMR; Byeon CH; Byeon IL; Aiken C; Böcking T
    Retrovirology; 2019 Apr; 16(1):10. PubMed ID: 30947724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naturally occurring capsid substitutions render HIV-1 cyclophilin A independent in human cells and TRIM-cyclophilin-resistant in Owl monkey cells.
    Chatterji U; Bobardt MD; Stanfield R; Ptak RG; Pallansch LA; Ward PA; Jones MJ; Stoddart CA; Scalfaro P; Dumont JM; Besseghir K; Rosenwirth B; Gallay PA
    J Biol Chem; 2005 Dec; 280(48):40293-300. PubMed ID: 16199531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies.
    Agarwal PK
    Proteins; 2004 Aug; 56(3):449-63. PubMed ID: 15229879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The highly polymorphic cyclophilin A-binding loop in HIV-1 capsid modulates viral resistance to MxB.
    Liu Z; Pan Q; Liang Z; Qiao W; Cen S; Liang C
    Retrovirology; 2015 Jan; 12():1. PubMed ID: 25571928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications for viral capsid assembly from crystal structures of HIV-1 Gag(1-278) and CA(N)(133-278).
    Kelly BN; Howard BR; Wang H; Robinson H; Sundquist WI; Hill CP
    Biochemistry; 2006 Sep; 45(38):11257-66. PubMed ID: 16981686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. trans-Complementation rescue of cyclophilin A-deficient viruses reveals that the requirement for cyclophilin A in human immunodeficiency virus type 1 replication is independent of its isomerase activity.
    Saphire AC; Bobardt MD; Gallay PA
    J Virol; 2002 Mar; 76(5):2255-62. PubMed ID: 11836403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclophilin A regulates HIV-1 infectivity, as demonstrated by gene targeting in human T cells.
    Braaten D; Luban J
    EMBO J; 2001 Mar; 20(6):1300-9. PubMed ID: 11250896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyclophilin A Prevents HIV-1 Restriction in Lymphocytes by Blocking Human TRIM5α Binding to the Viral Core.
    Selyutina A; Persaud M; Simons LM; Bulnes-Ramos A; Buffone C; Martinez-Lopez A; Scoca V; Di Nunzio F; Hiatt J; Marson A; Krogan NJ; Hultquist JF; Diaz-Griffero F
    Cell Rep; 2020 Mar; 30(11):3766-3777.e6. PubMed ID: 32187548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 p6-Another viral interaction partner to the host cellular protein cyclophilin A.
    Solbak SM; Reksten TR; Röder R; Wray V; Horvli O; Raae AJ; Henklein P; Henklein P; Fossen T
    Biochim Biophys Acta; 2012 Apr; 1824(4):667-78. PubMed ID: 22342556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclophilin A potentiates TRIM5α inhibition of HIV-1 nuclear import without promoting TRIM5α binding to the viral capsid.
    Burse M; Shi J; Aiken C
    PLoS One; 2017; 12(8):e0182298. PubMed ID: 28767697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural consequences of cyclophilin A binding on maturational refolding in human immunodeficiency virus type 1 capsid protein.
    Dietrich L; Ehrlich LS; LaGrassa TJ; Ebbets-Reed D; Carter C
    J Virol; 2001 May; 75(10):4721-33. PubMed ID: 11312344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The V86M mutation in HIV-1 capsid confers resistance to TRIM5α by abrogation of cyclophilin A-dependent restriction and enhancement of viral nuclear import.
    Veillette M; Bichel K; Pawlica P; Freund SM; Plourde MB; Pham QT; Reyes-Moreno C; James LC; Berthoux L
    Retrovirology; 2013 Feb; 10():25. PubMed ID: 23448277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin A.
    Bosco DA; Eisenmesser EZ; Pochapsky S; Sundquist WI; Kern D
    Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5247-52. PubMed ID: 11929983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The host-pathogen interaction of human cyclophilin A and HIV-1 Vpr requires specific N-terminal and novel C-terminal domains.
    Solbak SM; Wray V; Horvli O; Raae AJ; Flydal MI; Henklein P; Henklein P; Nimtz M; Schubert U; Fossen T
    BMC Struct Biol; 2011 Dec; 11():49. PubMed ID: 22185200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid substitutions in Gag protein at non-cleavage sites are indispensable for the development of a high multitude of HIV-1 resistance against protease inhibitors.
    Gatanaga H; Suzuki Y; Tsang H; Yoshimura K; Kavlick MF; Nagashima K; Gorelick RJ; Mardy S; Tang C; Summers MF; Mitsuya H
    J Biol Chem; 2002 Feb; 277(8):5952-61. PubMed ID: 11741936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.