BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 16275763)

  • 1. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis.
    Asagiri M; Sato K; Usami T; Ochi S; Nishina H; Yoshida H; Morita I; Wagner EF; Mak TW; Serfling E; Takayanagi H
    J Exp Med; 2005 Nov; 202(9):1261-9. PubMed ID: 16275763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SUV39H1-driven NFATc1 methylation is essential for the c-Cbl-mediated degradation of NFATc1 in an osteoclast lineage.
    Jeong DW; Kim HJ; Park JW; Lee S; Jung H; Yi EC; Kim N; Chun YS
    Genes Dis; 2024 Jul; 11(4):101034. PubMed ID: 38510482
    [No Abstract]   [Full Text] [Related]  

  • 3. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway.
    Nishikawa K; Iwamoto Y; Kobayashi Y; Katsuoka F; Kawaguchi S; Tsujita T; Nakamura T; Kato S; Yamamoto M; Takayanagi H; Ishii M
    Nat Med; 2015 Mar; 21(3):281-7. PubMed ID: 25706873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems.
    Takayanagi H
    Nat Rev Immunol; 2007 Apr; 7(4):292-304. PubMed ID: 17380158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elementary fusion modalities of osteoclasts.
    Søe K; Hobolt-Pedersen AS; Delaisse JM
    Bone; 2015 Apr; 73():181-9. PubMed ID: 25527420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts.
    Shin NY; Choi H; Neff L; Wu Y; Saito H; Ferguson SM; De Camilli P; Baron R
    J Cell Biol; 2014 Oct; 207(1):73-89. PubMed ID: 25287300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation.
    Nishikawa K; Nakashima T; Hayashi M; Fukunaga T; Kato S; Kodama T; Takahashi S; Calame K; Takayanagi H
    Proc Natl Acad Sci U S A; 2010 Feb; 107(7):3117-22. PubMed ID: 20133620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation.
    Negishi-Koga T; Takayanagi H
    Immunol Rev; 2009 Sep; 231(1):241-56. PubMed ID: 19754901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis.
    Zhao B; Takami M; Yamada A; Wang X; Koga T; Hu X; Tamura T; Ozato K; Choi Y; Ivashkiv LB; Takayanagi H; Kamijo R
    Nat Med; 2009 Sep; 15(9):1066-71. PubMed ID: 19718038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism.
    Aliprantis AO; Ueki Y; Sulyanto R; Park A; Sigrist KS; Sharma SM; Ostrowski MC; Olsen BR; Glimcher LH
    J Clin Invest; 2008 Nov; 118(11):3775-89. PubMed ID: 18846253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular understanding of osteoclast differentiation.
    Asagiri M; Takayanagi H
    Bone; 2007 Feb; 40(2):251-64. PubMed ID: 17098490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation.
    Park JH; Lee NK; Lee SY
    Mol Cells; 2017 Oct; 40(10):706-713. PubMed ID: 29047262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1.
    Yamashita T; Yao Z; Li F; Zhang Q; Badell IR; Schwarz EM; Takeshita S; Wagner EF; Noda M; Matsuo K; Xing L; Boyce BF
    J Biol Chem; 2007 Jun; 282(25):18245-18253. PubMed ID: 17485464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoblast-osteoclast interactions.
    Chen X; Wang Z; Duan N; Zhu G; Schwarz EM; Xie C
    Connect Tissue Res; 2018 Mar; 59(2):99-107. PubMed ID: 28324674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL.
    Yasuda H; Shima N; Nakagawa N; Yamaguchi K; Kinosaki M; Mochizuki S; Tomoyasu A; Yano K; Goto M; Murakami A; Tsuda E; Morinaga T; Higashio K; Udagawa N; Takahashi N; Suda T
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3597-602. PubMed ID: 9520411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in osteoclast biology.
    Ono T; Nakashima T
    Histochem Cell Biol; 2018 Apr; 149(4):325-341. PubMed ID: 29392395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor.
    Wong BR; Josien R; Lee SY; Vologodskaia M; Steinman RM; Choi Y
    J Biol Chem; 1998 Oct; 273(43):28355-9. PubMed ID: 9774460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA velocity of single cells.
    La Manno G; Soldatov R; Zeisel A; Braun E; Hochgerner H; Petukhov V; Lidschreiber K; Kastriti ME; Lönnerberg P; Furlan A; Fan J; Borm LE; Liu Z; van Bruggen D; Guo J; He X; Barker R; Sundström E; Castelo-Branco G; Cramer P; Adameyko I; Linnarsson S; Kharchenko PV
    Nature; 2018 Aug; 560(7719):494-498. PubMed ID: 30089906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Building strong bones: molecular regulation of the osteoblast lineage.
    Long F
    Nat Rev Mol Cell Biol; 2011 Dec; 13(1):27-38. PubMed ID: 22189423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocurable 3D-printed PMBG/TCP biphasic scaffold mimicking vasculature for bone regeneration.
    Zhang C; Ren Y; Kong W; Liu Y; Li H; Yang H; Cai B; Dai K; Wang C; Tang L; Niu H; Wang J
    Int J Bioprint; 2023; 9(5):767. PubMed ID: 37457937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.