These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 16275763)
41. Nuclear factor of activated T cells 2 is required for osteoclast differentiation and function in vitro but not in vivo. Yu J; Zanotti S; Schilling L; Canalis E J Cell Biochem; 2018 Nov; 119(11):9334-9345. PubMed ID: 30010214 [TBL] [Abstract][Full Text] [Related]
42. Nuclear factor of activated T cells 1 and 2 are required for vertebral homeostasis. Canalis E; Schilling L; Eller T; Yu J J Cell Physiol; 2020 Nov; 235(11):8520-8532. PubMed ID: 32329053 [TBL] [Abstract][Full Text] [Related]
43. Role of nuclear factor of activated T cells in chondrogenesis osteogenesis and osteochondroma formation. Canalis E; Schilling L; Eller T; Yu J J Endocrinol Invest; 2022 Aug; 45(8):1507-1520. PubMed ID: 35352320 [TBL] [Abstract][Full Text] [Related]
44. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation. Maruyama K; Fukasaka M; Vandenbon A; Saitoh T; Kawasaki T; Kondo T; Yokoyama KK; Kidoya H; Takakura N; Standley D; Takeuchi O; Akira S Immunity; 2012 Dec; 37(6):1024-36. PubMed ID: 23200825 [TBL] [Abstract][Full Text] [Related]
45. Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. Klein M; Klein-Hessling S; Palmetshofer A; Serfling E; Tertilt C; Bopp T; Heib V; Becker M; Taube C; Schild H; Schmitt E; Stassen M J Immunol; 2006 Nov; 177(10):6667-74. PubMed ID: 17082579 [TBL] [Abstract][Full Text] [Related]
46. Tmem178 acts in a novel negative feedback loop targeting NFATc1 to regulate bone mass. Decker CE; Yang Z; Rimer R; Park-Min KH; Macaubas C; Mellins ED; Novack DV; Faccio R Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15654-9. PubMed ID: 26644563 [TBL] [Abstract][Full Text] [Related]
47. BHLHE40 promotes osteoclastogenesis and abnormal bone resorption via c-Fos/NFATc1. Zhang Y; Yang M; Zhang S; Yang Z; Zhu Y; Wang Y; Chen Z; Lv X; Huang Z; Xie Y; Cai L Cell Biosci; 2022 May; 12(1):70. PubMed ID: 35619122 [TBL] [Abstract][Full Text] [Related]
48. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Grigoriadis AE; Wang ZQ; Cecchini MG; Hofstetter W; Felix R; Fleisch HA; Wagner EF Science; 1994 Oct; 266(5184):443-8. PubMed ID: 7939685 [TBL] [Abstract][Full Text] [Related]
49. Differential contribution of NFATc2 and NFATc1 to TNF-alpha gene expression in T cells. Kaminuma O; Kitamura F; Kitamura N; Hiroi T; Miyoshi H; Miyawaki A; Miyatake S J Immunol; 2008 Jan; 180(1):319-26. PubMed ID: 18097033 [TBL] [Abstract][Full Text] [Related]
50. Osteomyelosclerosis, anemia and extramedullary hematopoiesis in mice lacking the transcription factor NFATc2. Bauer W; Rauner M; Haase M; Kujawski S; Arabanian LS; Habermann I; Hofbauer LC; Ehninger G; Kiani A Haematologica; 2011 Nov; 96(11):1580-8. PubMed ID: 21750088 [TBL] [Abstract][Full Text] [Related]
51. NFATc1 regulation of TRAIL expression in human intestinal cells. Wang Q; Zhou Y; Weiss HL; Chow CW; Evers BM PLoS One; 2011; 6(5):e19882. PubMed ID: 21603612 [TBL] [Abstract][Full Text] [Related]
52. Identification and characterization of NFATc1 Yu F; Li F; Yu P; Zhou B; Ye L Cell Rep; 2022 Nov; 41(6):111599. PubMed ID: 36351390 [TBL] [Abstract][Full Text] [Related]
53. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Peng SL; Gerth AJ; Ranger AM; Glimcher LH Immunity; 2001 Jan; 14(1):13-20. PubMed ID: 11163226 [TBL] [Abstract][Full Text] [Related]
54. The effect of CD137-CD137 ligand interaction on the expression of NFATc1 in apolipoprotein E-deficient mice. Yan J; Yang H; Yuan W; Wang C Int J Cardiol; 2012 May; 157(1):134-7. PubMed ID: 22464476 [No Abstract] [Full Text] [Related]
55. NFATc1 identifies a population of proximal tubule cell progenitors. Langworthy M; Zhou B; de Caestecker M; Moeckel G; Baldwin HS J Am Soc Nephrol; 2009 Feb; 20(2):311-21. PubMed ID: 19118153 [TBL] [Abstract][Full Text] [Related]
56. Functions of Fos phosphorylation in bone homeostasis, cytokine response and tumourigenesis. Bakiri L; Reschke MO; Gefroh HA; Idarraga MH; Polzer K; Zenz R; Schett G; Wagner EF Oncogene; 2011 Mar; 30(13):1506-17. PubMed ID: 21119595 [TBL] [Abstract][Full Text] [Related]
57. Fos and bone cell development: lessons from a nuclear oncogene. Grigoriadis AE; Wang ZQ; Wagner EF Trends Genet; 1995 Nov; 11(11):436-41. PubMed ID: 8578600 [TBL] [Abstract][Full Text] [Related]
58. NFATC1 and NFATC2 expression patterns in human osteochondromas. Wang Y; Ren J; Hou G; Ge X Heliyon; 2023 Jan; 9(1):e13018. PubMed ID: 36747924 [TBL] [Abstract][Full Text] [Related]
59. NFAT restricts osteochondroma formation from entheseal progenitors. Ge X; Tsang K; He L; Garcia RA; Ermann J; Mizoguchi F; Zhang M; Zhou B; Zhou B; Aliprantis AO JCI Insight; 2016 Apr; 1(4):e86254. PubMed ID: 27158674 [TBL] [Abstract][Full Text] [Related]
60. Psychiatric disorders: a feat of epigenetic engineering. Whalley K Nat Rev Neurosci; 2014 Dec; 15(12):768-9. PubMed ID: 25409693 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]