These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 16275763)
61. Epigenetic pathways regulating bone homeostasis. Lian JB Bone; 2015 Dec; 81():731-732. PubMed ID: 26036171 [TBL] [Abstract][Full Text] [Related]
62. DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nishikawa K; Iwamoto Y; Kobayashi Y; Katsuoka F; Kawaguchi S; Tsujita T; Nakamura T; Kato S; Yamamoto M; Takayanagi H; Ishii M Nat Med; 2015 Mar; 21(3):281-7. PubMed ID: 25706873 [TBL] [Abstract][Full Text] [Related]
63. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Takayanagi H Nat Rev Immunol; 2007 Apr; 7(4):292-304. PubMed ID: 17380158 [TBL] [Abstract][Full Text] [Related]
64. Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Nishikawa K; Nakashima T; Hayashi M; Fukunaga T; Kato S; Kodama T; Takahashi S; Calame K; Takayanagi H Proc Natl Acad Sci U S A; 2010 Feb; 107(7):3117-22. PubMed ID: 20133620 [TBL] [Abstract][Full Text] [Related]
65. The elementary fusion modalities of osteoclasts. Søe K; Hobolt-Pedersen AS; Delaisse JM Bone; 2015 Apr; 73():181-9. PubMed ID: 25527420 [TBL] [Abstract][Full Text] [Related]
66. Dynamin and endocytosis are required for the fusion of osteoclasts and myoblasts. Shin NY; Choi H; Neff L; Wu Y; Saito H; Ferguson SM; De Camilli P; Baron R J Cell Biol; 2014 Oct; 207(1):73-89. PubMed ID: 25287300 [TBL] [Abstract][Full Text] [Related]
67. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Negishi-Koga T; Takayanagi H Immunol Rev; 2009 Sep; 231(1):241-56. PubMed ID: 19754901 [TBL] [Abstract][Full Text] [Related]
68. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Zhao B; Takami M; Yamada A; Wang X; Koga T; Hu X; Tamura T; Ozato K; Choi Y; Ivashkiv LB; Takayanagi H; Kamijo R Nat Med; 2009 Sep; 15(9):1066-71. PubMed ID: 19718038 [TBL] [Abstract][Full Text] [Related]
69. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. Aliprantis AO; Ueki Y; Sulyanto R; Park A; Sigrist KS; Sharma SM; Ostrowski MC; Olsen BR; Glimcher LH J Clin Invest; 2008 Nov; 118(11):3775-89. PubMed ID: 18846253 [TBL] [Abstract][Full Text] [Related]
70. The molecular understanding of osteoclast differentiation. Asagiri M; Takayanagi H Bone; 2007 Feb; 40(2):251-64. PubMed ID: 17098490 [TBL] [Abstract][Full Text] [Related]
71. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Park JH; Lee NK; Lee SY Mol Cells; 2017 Oct; 40(10):706-713. PubMed ID: 29047262 [TBL] [Abstract][Full Text] [Related]
72. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. Yamashita T; Yao Z; Li F; Zhang Q; Badell IR; Schwarz EM; Takeshita S; Wagner EF; Noda M; Matsuo K; Xing L; Boyce BF J Biol Chem; 2007 Jun; 282(25):18245-18253. PubMed ID: 17485464 [TBL] [Abstract][Full Text] [Related]
74. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Yasuda H; Shima N; Nakagawa N; Yamaguchi K; Kinosaki M; Mochizuki S; Tomoyasu A; Yano K; Goto M; Murakami A; Tsuda E; Morinaga T; Higashio K; Udagawa N; Takahashi N; Suda T Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3597-602. PubMed ID: 9520411 [TBL] [Abstract][Full Text] [Related]
75. Recent advances in osteoclast biology. Ono T; Nakashima T Histochem Cell Biol; 2018 Apr; 149(4):325-341. PubMed ID: 29392395 [TBL] [Abstract][Full Text] [Related]
76. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. Wong BR; Josien R; Lee SY; Vologodskaia M; Steinman RM; Choi Y J Biol Chem; 1998 Oct; 273(43):28355-9. PubMed ID: 9774460 [TBL] [Abstract][Full Text] [Related]
77. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Grigoriadis AE; Wang ZQ; Cecchini MG; Hofstetter W; Felix R; Fleisch HA; Wagner EF Science; 1994 Oct; 266(5184):443-8. PubMed ID: 7939685 [TBL] [Abstract][Full Text] [Related]
78. Building strong bones: molecular regulation of the osteoblast lineage. Long F Nat Rev Mol Cell Biol; 2011 Dec; 13(1):27-38. PubMed ID: 22189423 [TBL] [Abstract][Full Text] [Related]
79. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253 [TBL] [Abstract][Full Text] [Related]
80. RNA velocity of single cells. La Manno G; Soldatov R; Zeisel A; Braun E; Hochgerner H; Petukhov V; Lidschreiber K; Kastriti ME; Lönnerberg P; Furlan A; Fan J; Borm LE; Liu Z; van Bruggen D; Guo J; He X; Barker R; Sundström E; Castelo-Branco G; Cramer P; Adameyko I; Linnarsson S; Kharchenko PV Nature; 2018 Aug; 560(7719):494-498. PubMed ID: 30089906 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]