These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 1627601)

  • 1. Molecular aging of lens crystallins and the life expectancy of the animal. Age-related protein structural changes studied in situ by Raman spectroscopy.
    Ozaki Y; Mizuno A
    Biochim Biophys Acta; 1992 Jun; 1121(3):245-51. PubMed ID: 1627601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens.
    Ozaki Y; Mizuno A; Itoh K; Yoshiura M; Iwamoto T; Iriyama K
    Biochemistry; 1983 Dec; 22(26):6254-9. PubMed ID: 6661433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfide bond formation in the eye lens.
    Yu NT; DeNagel DC; Pruett PL; Kuck JF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7965-8. PubMed ID: 3865209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
    Nakamura K; Jung YM; Era S; Sogami M; Ozaki Y; Takasaki A
    Biochim Biophys Acta; 2000 Mar; 1474(1):23-30. PubMed ID: 10699486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study.
    Siebinga I; Vrensen GF; Otto K; Puppels GJ; De Mul FF; Greve J
    Exp Eye Res; 1992 May; 54(5):759-67. PubMed ID: 1623961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging.
    Ozaki Y; Mizuno A; Itoh K; Iriyama K
    J Biol Chem; 1987 Nov; 262(32):15545-51. PubMed ID: 3680210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract.
    Mizuno A; Ozaki Y; Itoh K; Matsushima S; Iriyama K
    Biochem Biophys Res Commun; 1984 Mar; 119(3):989-94. PubMed ID: 6712681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the protein distribution in the pig lens cross section by Raman spectroscopy.
    Medina-Gutiérrez C; Frausto-Reyes C; Quintanar-Stephano JL; Sato-Berrú R; Barbosa-García O
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jun; 60(7):1573-7. PubMed ID: 15147700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of lens crystallins in an in vivo hyperbaric oxygen guinea pig model of nuclear cataract: dynamic light-scattering and HPLC analysis.
    Simpanya MF; Ansari RR; Suh KI; Leverenz VR; Giblin FJ
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4641-51. PubMed ID: 16303961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens.
    Su SP; McArthur JD; Truscott RJ; Aquilina JA
    Biochim Biophys Acta; 2011 May; 1814(5):647-56. PubMed ID: 21447408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens metabolism and aging: enzyme activities and enzyme alterations in lenses of different species during the process of aging.
    Ohrloff C; Hockwin O
    J Gerontol; 1983 May; 38(3):271-7. PubMed ID: 6841921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman spectroscopic measurement of total sulfhydryl in intact lens as affected by aging and ultraviolet irradiation. Deuterium exchange as a probe for accessible sulfhydryl in living tissue.
    East EJ; Chang RC; Yu NT; Kuck JF
    J Biol Chem; 1978 Mar; 253(5):1436-41. PubMed ID: 627547
    [No Abstract]   [Full Text] [Related]  

  • 15. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in the intramolecular disulfide bonding of alpha-A crystallin during aging of the human lens.
    Takemoto L
    Exp Eye Res; 1996 Nov; 63(5):585-90. PubMed ID: 8994362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopic evidence for nuclear disulfide in isolated lenses of hyperbaric oxygen-treated guinea pigs.
    Gosselin ME; Kapustij CJ; Venkateswaran UD; Leverenz VR; Giblin FJ
    Exp Eye Res; 2007 Mar; 84(3):493-9. PubMed ID: 17196965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local variations in protein structure in the human eye lens: a Raman microspectroscopic study.
    Smeets MH; Vrensen GF; Otto K; Puppels GJ; Greve J
    Biochim Biophys Acta; 1993 Aug; 1164(3):236-42. PubMed ID: 8343523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging and cataractous process of the lens detected by laser Raman spectroscopy.
    Mizuno A; Ozaki Y
    Lens Eye Toxic Res; 1991; 8(2-3):177-87. PubMed ID: 1832955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in water and crystallin content of the fetal and adult human lens, demonstrated by a microsectioning technique.
    Bours J; Födisch HJ; Hockwin O
    Ophthalmic Res; 1987; 19(4):235-9. PubMed ID: 3320839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.