These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1627603)

  • 1. Human red cell acid phosphatase (ACP1): the primary structure of the two pairs of isozymes encoded by the ACP1*A and ACP1*C alleles.
    Dissing J; Johnsen AH
    Biochim Biophys Acta; 1992 Jun; 1121(3):261-8. PubMed ID: 1627603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human red cell acid phosphatase (ACP1). The amino acid sequence of the two isozymes Bf and Bs encoded by the ACP1*B allele.
    Dissing J; Johnsen AH; Sensabaugh GF
    J Biol Chem; 1991 Nov; 266(31):20619-25. PubMed ID: 1939112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunochemical characterization of human red cell acid phosphatase isozymes.
    Dissing J
    Biochem Genet; 1987 Dec; 25(11-12):901-18. PubMed ID: 3130837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exon structure at the human ACP1 locus supports alternative splicing model for f and s isozyme generation.
    Lazaruk KD; Dissing J; Sensabaugh GF
    Biochem Biophys Res Commun; 1993 Oct; 196(1):440-6. PubMed ID: 8216326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human red cell acid phosphatase (ACP1): evidence for differences in the primary structure of the two isozymes encoded by the ACP1*B allele.
    Dissing J; Sensabaugh GF
    Biochem Genet; 1987 Dec; 25(11-12):919-27. PubMed ID: 3450278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human red cell acid phosphatase: purification and properties of the A, B and C isozymes.
    Dissing J; Svensmark O
    Biochim Biophys Acta; 1990 Dec; 1041(3):232-42. PubMed ID: 2268668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of acid phosphatase ACP1 variants by isoelectric focusing and conventional electrophoresis: identification of three new alleles, ACP1*N, ACP1*P and ACP1*S.
    Miller SA; Nelson MS; Dykes DD; Polesky HF
    Hum Hered; 1987; 37(6):371-5. PubMed ID: 3679237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity modulation of the fast and slow isozymes of human cytosolic low-molecular-weight acid phosphatase (ACP1) by purines.
    Dissing J; Rangaard B; Christensen U
    Biochim Biophys Acta; 1993 Mar; 1162(3):275-82. PubMed ID: 8457591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic variation in the phosphotransferase activity of human red cell acid phosphatase (ACP1).
    Golden VL; Sensabaugh GF
    Hum Genet; 1986 Apr; 72(4):340-3. PubMed ID: 3009301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of the ACP01 allele in Czechoslovakia.
    Nezbeda P
    Hum Genet; 1979 Jan; 46(2):227-9. PubMed ID: 422205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene structure, sequence, and chromosomal localization of the human red cell-type low-molecular-weight acid phosphotyrosyl phosphatase gene, ACP1.
    Bryson GL; Massa H; Trask BJ; Van Etten RL
    Genomics; 1995 Nov; 30(2):133-40. PubMed ID: 8586411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACP1 and human adaptability. 1. Association with common diseases: a case-control study.
    Bottini E; Gloria-Bottini F; Borgiani P
    Hum Genet; 1995 Dec; 96(6):629-37. PubMed ID: 8522318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An examination of the age-related patterns of decay of acid phosphatase (ACP1) in human red cells from individuals of different phenotypes.
    Rogers PA; Fisher RA; Putt W
    Biochem Genet; 1978 Aug; 16(7-8):727-38. PubMed ID: 728063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of ACP1, AK1 and ALAD polymorphisms in northern Portugal.
    Amorim A; Rocha J; Santos MT
    Gene Geogr; 1994 Aug; 8(2):147-50. PubMed ID: 7547603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes.
    Gilbert JM; Fowler A; Bleibaum J; Clarke S
    Biochemistry; 1988 Jul; 27(14):5227-33. PubMed ID: 3167043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative splicing of the human isoaspartyl protein carboxyl methyltransferase RNA leads to the generation of a C-terminal -RDEL sequence in isozyme II.
    MacLaren DC; Kagan RM; Clarke S
    Biochem Biophys Res Commun; 1992 May; 185(1):277-83. PubMed ID: 1339271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human red-cell acid phosphatase (ACP1): a new mutant (ACP1*KUK) detected by isoelectric focusing, kinetics of thermostability and substrate activity.
    Arnaud J; Vavrusa B; Sevin J; Constans J
    Hum Hered; 1989; 39(5):288-93. PubMed ID: 2613255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct C-terminal sequences of isozymes I and II of the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase.
    Ingrosso D; Kagan RM; Clarke S
    Biochem Biophys Res Commun; 1991 Feb; 175(1):351-8. PubMed ID: 1998518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three new phenotypes of human red cell acid phosphatase: ACP1FA, ACP1GA, and ACP1GB.
    Nelson MS; Smith EA; Carlton WK; Andrus RH; Reisner EG
    Hum Genet; 1984; 67(4):369-71. PubMed ID: 6490004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas).
    Durmus A; Eicken C; Spener F; Krebs B
    Biochim Biophys Acta; 1999 Sep; 1434(1):202-9. PubMed ID: 10556574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.