These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 16276531)
1. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models. Ladiwala A; Xia F; Luo Q; Breneman CM; Cramer SM Biotechnol Bioeng; 2006 Apr; 93(5):836-50. PubMed ID: 16276531 [TBL] [Abstract][Full Text] [Related]
2. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems. Chen J; Yang T; Cramer SM J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048 [TBL] [Abstract][Full Text] [Related]
3. Prediction of protein retention in hydrophobic interaction chromatography. Mahn A; Asenjo JA Biotechnol Adv; 2005 Jul; 23(5):359-68. PubMed ID: 15894452 [TBL] [Abstract][Full Text] [Related]
4. Classification of protein adsorption and recovery at low salt conditions in hydrophobic interaction chromatographic systems. Chen J; Luo Q; Breneman CM; Cramer SM J Chromatogr A; 2007 Jan; 1139(2):236-46. PubMed ID: 17126350 [TBL] [Abstract][Full Text] [Related]
5. Protein instability during HIC: describing the effects of mobile phase conditions on instability and chromatographic retention. Xiao Y; Freed AS; Jones TT; Makrodimitris K; O'Connell JP; Fernandez EJ Biotechnol Bioeng; 2006 Apr; 93(6):1177-89. PubMed ID: 16444741 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of selectivity changes in HIC systems using a preferential interaction based analysis. Xia F; Nagrath D; Garde S; Cramer SM Biotechnol Bioeng; 2004 Aug; 87(3):354-63. PubMed ID: 15281110 [TBL] [Abstract][Full Text] [Related]
7. Investigation of protein binding affinity in multimodal chromatographic systems using a homologous protein library. Chung WK; Hou Y; Holstein M; Freed A; Makhatadze GI; Cramer SM J Chromatogr A; 2010 Jan; 1217(2):191-8. PubMed ID: 19732898 [TBL] [Abstract][Full Text] [Related]
8. Protein adsorption isotherm behavior in hydrophobic interaction chromatography. Chen J; Cramer SM J Chromatogr A; 2007 Sep; 1165(1-2):67-77. PubMed ID: 17698076 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic interaction chromatography selectivity changes among three stable proteins: conformation does not play a major role. Jones TT; Fernandez EJ Biotechnol Bioeng; 2004 Aug; 87(3):388-99. PubMed ID: 15281113 [TBL] [Abstract][Full Text] [Related]
10. Modelling of retention of pesticides in reversed-phase high-performance liquid chromatography: quantitative structure-retention relationships based on solute quantum-chemical descriptors and experimental (solvatochromic and spin-probe) mobile phase descriptors. D'Archivio AA; Ruggieri F; Mazzeo P; Tettamanti E Anal Chim Acta; 2007 Jun; 593(2):140-51. PubMed ID: 17543600 [TBL] [Abstract][Full Text] [Related]
11. The molecular descriptor logSumAA and its alternatives in QSRR models to predict the retention of peptides. Bodzioch K; Baczek T; Kaliszan R; Vander Heyden Y J Pharm Biomed Anal; 2009 Nov; 50(4):563-9. PubMed ID: 18929455 [TBL] [Abstract][Full Text] [Related]
12. Investigation of protein binding affinity and preferred orientations in ion exchange systems using a homologous protein library. Chung WK; Hou Y; Freed A; Holstein M; Makhatadze GI; Cramer SM Biotechnol Bioeng; 2009 Feb; 102(3):869-81. PubMed ID: 18821632 [TBL] [Abstract][Full Text] [Related]
13. Hydrophobic interaction chromatography of proteins. I. The effects of protein and adsorbent properties on retention and recovery. To BC; Lenhoff AM J Chromatogr A; 2007 Feb; 1141(2):191-205. PubMed ID: 17207806 [TBL] [Abstract][Full Text] [Related]
14. Classification of protein binding in hydroxyapatite chromatography: synergistic interactions on the molecular scale. Hou Y; Morrison CJ; Cramer SM Anal Chem; 2011 May; 83(10):3709-16. PubMed ID: 21495696 [TBL] [Abstract][Full Text] [Related]
15. Electrostatic calculations and quantitative protein retention models for ion exchange chromatography. Malmquist G; Nilsson UH; Norrman M; Skarp U; Strömgren M; Carredano E J Chromatogr A; 2006 May; 1115(1-2):164-86. PubMed ID: 16620840 [TBL] [Abstract][Full Text] [Related]
16. New approaches for predicting protein retention time in hydrophobic interaction chromatography. Lienqueo ME; Mahn A; Navarro G; Salgado JC; Perez-Acle T; Rapaport I; Asenjo JA J Mol Recognit; 2006; 19(4):260-9. PubMed ID: 16752432 [TBL] [Abstract][Full Text] [Related]
17. Mesoscopic simulation of adsorption of peptides in a hydrophobic chromatography system. Makrodimitris K; Fernandez EJ; Woolf TB; O'Connell JP Anal Chem; 2005 Mar; 77(5):1243-52. PubMed ID: 15732903 [TBL] [Abstract][Full Text] [Related]
18. Methods of calculating protein hydrophobicity and their application in developing correlations to predict hydrophobic interaction chromatography retention. Mahn A; Lienqueo ME; Salgado JC J Chromatogr A; 2009 Mar; 1216(10):1838-44. PubMed ID: 19100553 [TBL] [Abstract][Full Text] [Related]
19. Influence of surface modification on protein retention in ion-exchange chromatography. Evaluation using different retention models. Bruch T; Graalfs H; Jacob L; Frech C J Chromatogr A; 2009 Feb; 1216(6):919-26. PubMed ID: 19111307 [TBL] [Abstract][Full Text] [Related]
20. Identification of chemically selective displacers using parallel batch screening experiments and quantitative structure efficacy relationship models. Tugcu N; Ladiwala A; Breneman CM; Cramer SM Anal Chem; 2003 Nov; 75(21):5806-16. PubMed ID: 14588021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]