These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16276919)
1. [Study on the properties of methyl parathion hydrolase from Pseudomonas sp. WBC-3]. Chu X; Zhang X; Chen Y; Liu H; Song D Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):453-9. PubMed ID: 16276919 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. Dong YJ; Bartlam M; Sun L; Zhou YF; Zhang ZP; Zhang CG; Rao Z; Zhang XE J Mol Biol; 2005 Oct; 353(3):655-63. PubMed ID: 16181636 [TBL] [Abstract][Full Text] [Related]
3. Crystallization and preliminary X-ray studies of methyl parathion hydrolase from Pseudomonas sp. WBC-3. Sun L; Dong Y; Zhou Y; Yang M; Zhang C; Rao Z; Zhang XE Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):954-6. PubMed ID: 15103151 [TBL] [Abstract][Full Text] [Related]
4. Improving methyl parathion hydrolase to enhance its chlorpyrifos-hydrolysing efficiency. Xie J; Zhao Y; Zhang H; Liu Z; Lu Z Lett Appl Microbiol; 2014 Jan; 58(1):53-9. PubMed ID: 24010722 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading organophosphate insecticides. Ekkhunnatham A; Jongsareejit B; Yamkunthong W; Wichitwechkarn J World J Microbiol Biotechnol; 2012 Apr; 28(4):1739-46. PubMed ID: 22805956 [TBL] [Abstract][Full Text] [Related]
6. Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Liu H; Zhang JJ; Wang SJ; Zhang XE; Zhou NY Biochem Biophys Res Commun; 2005 Sep; 334(4):1107-14. PubMed ID: 16039612 [TBL] [Abstract][Full Text] [Related]
7. Improved efficiency of a novel methyl parathion hydrolase using consensus approach. Liu XY; Chen FF; Li CX; Luo XJ; Chen Q; Bai YP; Xu JH Enzyme Microb Technol; 2016 Nov; 93-94():11-17. PubMed ID: 27702470 [TBL] [Abstract][Full Text] [Related]
8. A transposable class I composite transposon carrying mph (methyl parathion hydrolase) from Pseudomonas sp. strain WBC-3. Wei M; Zhang JJ; Liu H; Wang SJ; Fu H; Zhou NY FEMS Microbiol Lett; 2009 Mar; 292(1):85-91. PubMed ID: 19222584 [TBL] [Abstract][Full Text] [Related]
9. Genetic surface-display of methyl parathion hydrolase on Yarrowia lipolytica for removal of methyl parathion in water. Wang XX; Chi Z; Ru SG; Chi ZM Biodegradation; 2012 Sep; 23(5):763-74. PubMed ID: 22534797 [TBL] [Abstract][Full Text] [Related]
10. Altering the substrate specificity of methyl parathion hydrolase with directed evolution. Ng TK; Gahan LR; Schenk G; Ollis DL Arch Biochem Biophys; 2015 May; 573():59-68. PubMed ID: 25797441 [TBL] [Abstract][Full Text] [Related]
11. [Study on Pseudomonas sp. WBC-3 capable of complete degradation of methylparathion]. Chen Y; Zhang X; Liu H; Wang Y; Xia X Wei Sheng Wu Xue Bao; 2002 Aug; 42(4):490-7. PubMed ID: 12557558 [TBL] [Abstract][Full Text] [Related]
12. Expression, purification, and characterization of a novel methyl parathion hydrolase. Fu G; Cui Z; Huang T; Li S Protein Expr Purif; 2004 Aug; 36(2):170-6. PubMed ID: 15249038 [TBL] [Abstract][Full Text] [Related]
13. Identifying and engineering a critical amino acid residue to enhance the catalytic efficiency of Pseudomonas sp. methyl parathion hydrolase. Li Y; Yang H; Xu F Appl Microbiol Biotechnol; 2018 Aug; 102(15):6537-6545. PubMed ID: 29948121 [TBL] [Abstract][Full Text] [Related]
14. Construction of an engineered strain free of antibiotic resistance gene markers for simultaneous mineralization of methyl parathion and ortho-nitrophenol. Liu Y; Wei Q; Wang SJ; Liu H; Zhou NY Appl Microbiol Biotechnol; 2010 Jun; 87(1):281-7. PubMed ID: 20157808 [TBL] [Abstract][Full Text] [Related]
15. [Isolation and characterization of a p-nitrophenol degradation Pseudomonas sp. strain P3 and construction of a genetically engineered bacterium]. Cui Z; Zhang R; He J; Li S Wei Sheng Wu Xue Bao; 2002 Feb; 42(1):19-26. PubMed ID: 12557343 [TBL] [Abstract][Full Text] [Related]
16. Improving the thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 using a computationally aided method. Tian J; Wang P; Huang L; Chu X; Wu N; Fan Y Appl Microbiol Biotechnol; 2013 Apr; 97(7):2997-3006. PubMed ID: 23001009 [TBL] [Abstract][Full Text] [Related]
17. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676 [TBL] [Abstract][Full Text] [Related]
18. Improving the acidic stability of a methyl parathion hydrolase by changing basic residues to acidic residues. Huang L; Wang P; Tian J; Jiang H; Wu N; Yang P; Yao B; Fan Y Biotechnol Lett; 2012 Jun; 34(6):1115-21. PubMed ID: 22350335 [TBL] [Abstract][Full Text] [Related]
19. Predicting the protein family of methyl parathion hydrolase. Tian J; Guo X; Chu X; Wu N; Guo J; Yao B Int J Bioinform Res Appl; 2008; 4(2):201-10. PubMed ID: 18490263 [TBL] [Abstract][Full Text] [Related]
20. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. Dumas DP; Caldwell SR; Wild JR; Raushel FM J Biol Chem; 1989 Nov; 264(33):19659-65. PubMed ID: 2555328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]