These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 16277307)
1. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. Kim YJ; Varma RS J Org Chem; 2005 Sep; 70(20):7882-91. PubMed ID: 16277307 [TBL] [Abstract][Full Text] [Related]
2. An exploration of the coupling reactions of epoxides and carbon dioxide catalyzed by tetramethyltetraazaannulene chromium(III) derivatives: formation of copolymers versus cyclic carbonates. Darensbourg DJ; Fitch SB Inorg Chem; 2008 Dec; 47(24):11868-78. PubMed ID: 19007156 [TBL] [Abstract][Full Text] [Related]
3. Comparative kinetic studies of the copolymerization of cyclohexene oxide and propylene oxide with carbon dioxide in the presence of chromium salen derivatives. In situ FTIR measurements of copolymer vs cyclic carbonate production. Darensbourg DJ; Yarbrough JC; Ortiz C; Fang CC J Am Chem Soc; 2003 Jun; 125(25):7586-91. PubMed ID: 12812499 [TBL] [Abstract][Full Text] [Related]
4. New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. Kim HS; Kim JJ; Lee SD; Lah MS; Moon D; Jang HG Chemistry; 2003 Feb; 9(3):678-86. PubMed ID: 12569460 [TBL] [Abstract][Full Text] [Related]
5. The immobilization of glycidyl-group-containing ionic liquids and its application in CO2 cycloaddition reactions. Xie Y; Ding K; Liu Z; Li J; An G; Tao R; Sun Z; Yang Z Chemistry; 2010 Jun; 16(22):6687-92. PubMed ID: 20432416 [TBL] [Abstract][Full Text] [Related]
6. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts. He J; Wu T; Zhang Z; Ding K; Han B; Xie Y; Jiang T; Liu Z Chemistry; 2007; 13(24):6992-7. PubMed ID: 17539035 [TBL] [Abstract][Full Text] [Related]
7. In situ attenuated total reflection infrared spectroscopy of imidazolium-based room-temperature ionic liquids under "supercritical" CO(2). Seki T; Grunwaldt JD; Baiker A J Phys Chem B; 2009 Jan; 113(1):114-22. PubMed ID: 19067550 [TBL] [Abstract][Full Text] [Related]
8. Insights into hydrogen bond donor promoted fixation of carbon dioxide with epoxides catalyzed by ionic liquids. Liu M; Gao K; Liang L; Wang F; Shi L; Sheng L; Sun J Phys Chem Chem Phys; 2015 Feb; 17(8):5959-65. PubMed ID: 25639733 [TBL] [Abstract][Full Text] [Related]
9. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Lu XB; Ren WM; Wu GP Acc Chem Res; 2012 Oct; 45(10):1721-35. PubMed ID: 22857013 [TBL] [Abstract][Full Text] [Related]
10. On the formation of aliphatic polycarbonates from epoxides with chromium(III) and aluminum(III) metal-salen complexes. Luinstra GA; Haas GR; Molnar F; Bernhart V; Eberhardt R; Rieger B Chemistry; 2005 Oct; 11(21):6298-314. PubMed ID: 16106457 [TBL] [Abstract][Full Text] [Related]
11. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. Zhao D; Fei Z; Geldbach TJ; Scopelliti R; Dyson PJ J Am Chem Soc; 2004 Dec; 126(48):15876-82. PubMed ID: 15571412 [TBL] [Abstract][Full Text] [Related]
12. Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO Mujmule RB; Kim H J Environ Manage; 2022 Jul; 314():115045. PubMed ID: 35436708 [TBL] [Abstract][Full Text] [Related]
13. Nanoclusters in ionic liquids: evidence for N-heterocyclic carbene formation from imidazolium-based ionic liquids detected by (2)H NMR. Ott LS; Cline ML; Deetlefs M; Seddon KR; Finke RG J Am Chem Soc; 2005 Apr; 127(16):5758-9. PubMed ID: 15839652 [TBL] [Abstract][Full Text] [Related]
14. Iron(III) N,N-Dialkylcarbamate-Catalyzed Formation of Cyclic Carbonates from CO Bresciani G; Bortoluzzi M; Marchetti F; Pampaloni G ChemSusChem; 2018 Aug; 11(16):2737-2743. PubMed ID: 29897168 [TBL] [Abstract][Full Text] [Related]
15. Liquid phase behavior of ionic liquids with alcohols: experimental studies and modeling. Crosthwaite JM; Muldoon MJ; Aki SN; Maginn EJ; Brennecke JF J Phys Chem B; 2006 May; 110(18):9354-61. PubMed ID: 16671755 [TBL] [Abstract][Full Text] [Related]
16. Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions. Zhang S; Qi X; Ma X; Lu L; Deng Y J Phys Chem B; 2010 Mar; 114(11):3912-20. PubMed ID: 20199047 [TBL] [Abstract][Full Text] [Related]
17. Differences in reactivity of epoxides in the copolymerisation with carbon dioxide by zinc-based catalysts: propylene oxide versus cyclohexene oxide. Lehenmeier MW; Bruckmeier C; Klaus S; Dengler JE; Deglmann P; Ott AK; Rieger B Chemistry; 2011 Aug; 17(32):8858-69. PubMed ID: 21732442 [TBL] [Abstract][Full Text] [Related]
18. The reaction of primary aromatic amines with alkylene carbonates for the selective synthesis of bis-N-(2-hydroxy)alkylanilines: the catalytic effect of phosphonium-based ionic liquids. Selva M; Fabris M; Lucchini V; Perosa A; Noè M Org Biomol Chem; 2010 Nov; 8(22):5187-98. PubMed ID: 20844790 [TBL] [Abstract][Full Text] [Related]
19. Copolymerization of CO2 and cyclohexene oxide using a lysine-based (salen)Cr(III)Cl catalyst. Guo L; Wang C; Zhao W; Li H; Sun W; Shen Z Dalton Trans; 2009 Jul; (27):5406-10. PubMed ID: 19565093 [TBL] [Abstract][Full Text] [Related]
20. Nitrile-functionalized pyrrolidinium ionic liquids as solvents for cross-coupling reactions involving in situ generated nanoparticle catalyst reservoirs. Cui Y; Biondi I; Chaubey M; Yang X; Fei Z; Scopelliti R; Hartinger CG; Li Y; Chiappe C; Dyson PJ Phys Chem Chem Phys; 2010 Feb; 12(8):1834-41. PubMed ID: 20145850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]