These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16277455)

  • 1. Hot-drawing of single and multiwall carbon nanotube fibers for high toughness and alignment.
    Miaudet P; Badaire S; Maugey M; Derré A; Pichot V; Launois P; Poulin P; Zakri C
    Nano Lett; 2005 Nov; 5(11):2212-5. PubMed ID: 16277455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-Inspired Stretchable and Contractible Tough Fiber by the Hybridization of GO/MWNT/Polyurethane.
    Kim H; Jang Y; Lee DY; Moon JH; Choi JG; Spinks GM; Gambhir S; Officer DL; Wallace GG; Kim SJ
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31162-31168. PubMed ID: 31356738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron nitride nanotubes enhance mechanical properties of fibers from nanotube/polyvinyl alcohol dispersions.
    Khoury JF; Vitale JC; Larson TL; Ao G
    Nanoscale Adv; 2021 Dec; 4(1):77-86. PubMed ID: 36132953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Textiles Based on Highly Conducting Poly(vinyl alcohol)/Carbon Nanotube/Silver Nanobelt Hybrid Fibers.
    Shin YE; Cho JY; Yeom J; Ko H; Han JT
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31051-31058. PubMed ID: 34156236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers.
    Weisenberger MC; Grulke EA; Jacques D; Rantell T; Andrews R
    J Nanosci Nanotechnol; 2003 Dec; 3(6):535-9. PubMed ID: 15002136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments.
    Zhou G; Byun JH; Oh Y; Jung BM; Cha HJ; Seong DG; Um MK; Hyun S; Chou TW
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4788-4797. PubMed ID: 28098454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic Nanotube Mesophases Enable Strong Self-Healing Fibers.
    Lee WJ; Paineau E; Anthony DB; Gao Y; Leese HS; Rouzière S; Launois P; Shaffer MSP
    ACS Nano; 2020 May; 14(5):5570-5580. PubMed ID: 32255336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shape-engineerable composite fibers and their supercapacitor application.
    Kim KM; Lee JA; Sim HJ; Kim KA; Jalili R; Spinks GM; Kim SJ
    Nanoscale; 2016 Jan; 8(4):1910-4. PubMed ID: 26754398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spun Carbon Nanotube Fibres and Films as an Alternative to Printed Electronic Components.
    Taborowska P; Giżewski T; Patmore J; Janczak D; Jakubowska M; Lekawa-Raus A
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Commercial Wet-Spun Singlewall and Dry-Spun Multiwall Carbon Nanotube Fiber Surface O-Functionalization by Ozone Treatment.
    Sundaram RM; Yamada T; Kokubo K; Hata K; Sekiguchi A
    J Nanosci Nanotechnol; 2021 Dec; 21(12):6151-6159. PubMed ID: 34229816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning.
    Alemán B; Reguero V; Mas B; Vilatela JJ
    ACS Nano; 2015 Jul; 9(7):7392-8. PubMed ID: 26082976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printed Thermal Regulation Textiles.
    Gao T; Yang Z; Chen C; Li Y; Fu K; Dai J; Hitz EM; Xie H; Liu B; Song J; Yang B; Hu L
    ACS Nano; 2017 Nov; 11(11):11513-11520. PubMed ID: 29072903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.
    Liu K; Sun Y; Lin X; Zhou R; Wang J; Fan S; Jiang K
    ACS Nano; 2010 Oct; 4(10):5827-34. PubMed ID: 20831235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Super-Toughness Carbon Nanotube Yarns by Bio-Inspired Nano-Coiling Engineering.
    Cho YS; Lee JW; Jung Y; Park JY; Park JS; Kim SM; Yang SJ; Park CR
    Adv Sci (Weinh); 2024 Jul; 11(25):e2400460. PubMed ID: 38654622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance carbon nanotube fiber.
    Koziol K; Vilatela J; Moisala A; Motta M; Cunniff P; Sennett M; Windle A
    Science; 2007 Dec; 318(5858):1892-5. PubMed ID: 18006708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Strengthening of Carbon Nanotube Fibers under Extreme Mechanical Impulses.
    Xie W; Zhang R; Headrick RJ; Taylor LW; Kooi S; Pasquali M; Müftü S; Lee JH
    Nano Lett; 2019 Jun; 19(6):3519-3526. PubMed ID: 31084030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of nanotube fibers by x-ray scattering.
    Launois P; Marucci A; Vigolo B; Bernier P; Derré A; Poulin P
    J Nanosci Nanotechnol; 2001 Jun; 1(2):125-8. PubMed ID: 12914040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical and electromagnetic interference shielding Properties of poly(vinyl alcohol)/graphene and poly(vinyl alcohol)/multi-walled carbon nanotube composite nanofiber mats and the effect of Cu top-layer coating.
    Fujimori K; Gopiraman M; Kim HK; Kim BS; Kim IS
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1759-64. PubMed ID: 23755586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong and Stiff: High-Performance Cellulose Nanocrystal/Poly(vinyl alcohol) Composite Fibers.
    Lee WJ; Clancy AJ; Kontturi E; Bismarck A; Shaffer MS
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31500-31504. PubMed ID: 27933978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Carbon Nanotube/Polymer Composite Fiber from Layer-by-Layer Deposition.
    Wu ML; Chen Y; Zhang L; Zhan H; Qiang L; Wang JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8137-44. PubMed ID: 26959406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.