BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 16277718)

  • 1. Urinary bladder partial carbon dioxide tension during hemorrhagic shock and reperfusion: an observational study.
    Dubin A; Pozo MO; Edul VS; Murias G; Canales HS; Barán M; Maskin B; Ferrara G; Laporte M; Estenssoro E
    Crit Care; 2005 Oct; 9(5):R556-61. PubMed ID: 16277718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased blood flow prevents intramucosal acidosis in sheep endotoxemia: a controlled study.
    Dubin A; Murias G; Maskin B; Pozo MO; Sottile JP; Barán M; Edul VS; Canales HS; Badie JC; Etcheverry G; Estenssoro E
    Crit Care; 2005 Apr; 9(2):R66-73. PubMed ID: 15774052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen consumption, pCO2 gradients and regional blood flow distribution in an alternative model of intestinal autotransplantation.
    Cruz RJ; Correia CJ; Ribeiro CM; Poli de Figueiredo LF; Rocha e Silva M
    J Surg Res; 2006 Jan; 130(1):13-9. PubMed ID: 16271367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of hemorrhage on gastrointestinal oxygenation.
    Dubin A; Estenssoro E; Murias G; Canales H; Sottile P; Badie J; Barán M; Pálizas F; Laporte M; Rivas Díaz M
    Intensive Care Med; 2001 Dec; 27(12):1931-6. PubMed ID: 11797030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia.
    Dubin A; Murias G; Estenssoro E; Canales H; Badie J; Pozo M; Sottile JP; Barán M; Pálizas F; Laporte M
    Crit Care; 2002 Dec; 6(6):514-20. PubMed ID: 12493073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatosplanchnic vasoregulation and oxygen consumption during selective aortic blood flow reduction and reperfusion.
    Cruz RJ; Garrido AG; de Natale Caly D; Rocha-e-Silva M
    J Surg Res; 2011 Dec; 171(2):532-9. PubMed ID: 20850787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tonometry revisited: perfusion-related, metabolic, and respiratory components of gastric mucosal acidosis in acute cardiorespiratory failure.
    Jakob SM; Parviainen I; Ruokonen E; Kogan A; Takala J
    Shock; 2008 May; 29(5):543-8. PubMed ID: 18004228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Venoarterial PCO2 difference: a marker of postoperative cardiac output in children with congenital heart disease.
    Furqan M; Hashmat F; Amanullah M; Khan M; Durani HK; Anwar-ul-Haque
    J Coll Physicians Surg Pak; 2009 Oct; 19(10):640-3. PubMed ID: 19811716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced hypercapnia in experimental hemorrhagic shock.
    Kekomäki M; Kahdensuu M; Rokkanen P
    Acta Chir Scand; 1975; 141(1):1-6. PubMed ID: 1121917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreasing gut wall glucose as an early marker of impaired intestinal perfusion.
    Krejci V; Hiltebrand L; Büchi C; Ali SZ; Contaldo C; Takala J; Sigurdsson GH; Jakob SM
    Crit Care Med; 2006 Sep; 34(9):2406-14. PubMed ID: 16878039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of skeletal muscle PO2, PCO2, and pH with gastric tonometric P(CO2) and pH in hemorrhagic shock.
    McKinley BA; Butler BD
    Crit Care Med; 1999 Sep; 27(9):1869-77. PubMed ID: 10507612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic and regional pCO2 gradients as markers of intestinal ischaemia.
    Heino A; Hartikainen J; Merasto ME; Alhava E; Takala J
    Intensive Care Med; 1998 Jun; 24(6):599-604. PubMed ID: 9681782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of graded intestinal hypoperfusion and reperfusion using continuous saline tonometry in a porcine model.
    Fröjse R; Lehtipalo S; Winsö O; Johansson G; Biber B; Arnerlöv C
    Eur J Vasc Endovasc Surg; 2004 Jul; 28(1):79-88. PubMed ID: 15177236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meaning of arterio-venous PCO2 difference in circulatory shock.
    Lamia B; Monnet X; Teboul JL
    Minerva Anestesiol; 2006 Jun; 72(6):597-604. PubMed ID: 16682934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study.
    Nelimarkka O
    Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vasopressin decreases intestinal mucosal perfusion: a clinical study on cardiac surgery patients in vasodilatory shock.
    Nygren A; Thorén A; Ricksten SE
    Acta Anaesthesiol Scand; 2009 May; 53(5):581-8. PubMed ID: 19239407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in p(i)CO(2) reflect splanchnic mucosal ischaemia more reliably than changes in pH(i) during haemorrhagic shock.
    Meisner FG; Habler OP; Kemming GI; Kleen MS; Pape A; Messmer K
    Langenbecks Arch Surg; 2001 Aug; 386(5):333-8. PubMed ID: 11685563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraluminal "balloonless" air tonometry: a new method for determination of gastrointestinal mucosal carbon dioxide tension.
    Salzman AL; Strong KE; Wang H; Wollert PS; Vandermeer TJ; Fink MP
    Crit Care Med; 1994 Jan; 22(1):126-34. PubMed ID: 8124955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of levosimendan in normodynamic endotoxaemia: a controlled experimental study.
    Dubin A; Maskin B; Murias G; Pozo MO; Sottile JP; Barán M; Edul VS; Canales HS; Estenssoro E
    Resuscitation; 2006 May; 69(2):277-86. PubMed ID: 16458408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous assessment of gastric intramucosal PCO2 and pH in hemorrhagic shock using capnometric recirculating gas tonometry.
    Guzman JA; Kruse JA
    Crit Care Med; 1997 Mar; 25(3):533-7. PubMed ID: 9118673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.