These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16277976)
1. Interactions of amphipathic CPPs with model membranes. Deshayes S; Morris MC; Divita G; Heitz F Biochim Biophys Acta; 2006 Mar; 1758(3):328-35. PubMed ID: 16277976 [TBL] [Abstract][Full Text] [Related]
2. Interactions of amphipathic carrier peptides with membrane components in relation with their ability to deliver therapeutics. Deshayes S; Morris MC; Divita G; Heitz F J Pept Sci; 2006 Dec; 12(12):758-65. PubMed ID: 17131287 [TBL] [Abstract][Full Text] [Related]
3. Interactions of primary amphipathic cell penetrating peptides with model membranes: consequences on the mechanisms of intracellular delivery of therapeutics. Deshayes S; Morris MC; Divita G; Heitz F Curr Pharm Des; 2005; 11(28):3629-38. PubMed ID: 16305499 [TBL] [Abstract][Full Text] [Related]
4. Interactions of amphipathic CPPs with model membranes. Deshayes S; Konate K; Aldrian G; Heitz F; Divita G Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121 [TBL] [Abstract][Full Text] [Related]
5. Insight into the mechanism of internalization of the cell-penetrating carrier peptide Pep-1 through conformational analysis. Deshayes S; Heitz A; Morris MC; Charnet P; Divita G; Heitz F Biochemistry; 2004 Feb; 43(6):1449-57. PubMed ID: 14769021 [TBL] [Abstract][Full Text] [Related]
6. Fast membrane association is a crucial factor in the peptide pep-1 translocation mechanism: a kinetic study followed by surface plasmon resonance. Henriques ST; Castanho MA; Pattenden LK; Aguilar MI Biopolymers; 2010; 94(3):314-22. PubMed ID: 20049920 [TBL] [Abstract][Full Text] [Related]
7. Primary amphipathic cell-penetrating peptides: structural requirements and interactions with model membranes. Deshayes S; Plénat T; Aldrian-Herrada G; Divita G; Le Grimellec C; Heitz F Biochemistry; 2004 Jun; 43(24):7698-706. PubMed ID: 15196012 [TBL] [Abstract][Full Text] [Related]
8. Protein transport across membranes: Comparison between lysine and guanidinium-rich carriers. Lein M; deRonde BM; Sgolastra F; Tew GN; Holden MA Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2980-4. PubMed ID: 26342679 [TBL] [Abstract][Full Text] [Related]
9. Translocation of beta-galactosidase mediated by the cell-penetrating peptide pep-1 into lipid vesicles and human HeLa cells is driven by membrane electrostatic potential. Henriques ST; Costa J; Castanho MA Biochemistry; 2005 Aug; 44(30):10189-98. PubMed ID: 16042396 [TBL] [Abstract][Full Text] [Related]
10. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1. Almarwani B; Phambu EN; Alexander C; Nguyen HAT; Phambu N; Sunda-Meya A Biochim Biophys Acta Biomembr; 2018 Jun; 1860(6):1394-1402. PubMed ID: 29621495 [TBL] [Abstract][Full Text] [Related]
11. Translocation or membrane disintegration? Implication of peptide-membrane interactions in pep-1 activity. Henriques ST; Castanho MA J Pept Sci; 2008 Apr; 14(4):482-7. PubMed ID: 18181239 [TBL] [Abstract][Full Text] [Related]
12. The peptide carrier Pep-1 forms biologically efficient nanoparticle complexes. Muñoz-Morris MA; Heitz F; Divita G; Morris MC Biochem Biophys Res Commun; 2007 Apr; 355(4):877-82. PubMed ID: 17331466 [TBL] [Abstract][Full Text] [Related]
13. Single-molecule imaging of the association of the cell-penetrating peptide Pep-1 to model membranes. Sharonov A; Hochstrasser RM Biochemistry; 2007 Jul; 46(27):7963-72. PubMed ID: 17567046 [TBL] [Abstract][Full Text] [Related]
14. Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: a fluorescence study using Pep-1. Henriques ST; Costa J; Castanho MA FEBS Lett; 2005 Aug; 579(20):4498-502. PubMed ID: 16083883 [TBL] [Abstract][Full Text] [Related]
15. Design of a Pep-1 peptide-modified liposomal nanocarrier system for intracellular drug delivery: Conformational characterization and cellular uptake evaluation. Kang MJ; Kim BG; Eum JY; Park SH; Choi SE; An JJ; Jang SH; Eum WS; Lee J; Lee MW; Kang K; Oh CH; Choi SY; Choi YW J Drug Target; 2011 Aug; 19(7):497-505. PubMed ID: 20738150 [TBL] [Abstract][Full Text] [Related]
16. Interactions of primary amphipathic vector peptides with membranes. Conformational consequences and influence on cellular localization. Vidal P; Chaloin L; Heitz A; Van Mau N; Méry J; Divita G; Heitz F J Membr Biol; 1998 Apr; 162(3):259-64. PubMed ID: 9543498 [TBL] [Abstract][Full Text] [Related]
17. Physicochemical and biological characterization of pep-1/elastin complexes. Ahmad Nasrollahi S; Taghibiglou C; Fouladdel S; Dinarvand R; Moosavi Movahedi AA; Azizi E; Farboud ES Chem Biol Drug Des; 2013 Aug; 82(2):189-95. PubMed ID: 23601371 [TBL] [Abstract][Full Text] [Related]
18. Lipid-like behavior of signal sequence peptides at air-water interface. Ambroggio EE; Fidelio GD Biochim Biophys Acta; 2013 Feb; 1828(2):708-14. PubMed ID: 23159808 [TBL] [Abstract][Full Text] [Related]
19. A non-covalent peptide-based strategy for protein and peptide nucleic acid transduction. Gros E; Deshayes S; Morris MC; Aldrian-Herrada G; Depollier J; Heitz F; Divita G Biochim Biophys Acta; 2006 Mar; 1758(3):384-93. PubMed ID: 16545342 [TBL] [Abstract][Full Text] [Related]
20. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes. Ding B; Chen Z J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]