BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16277987)

  • 21. Experimental analysis of the performance of an air-powered needle-free liquid jet injector.
    Portaro R; Ng HD
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3499-502. PubMed ID: 24110483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of solution viscosity and injection protocol on distribution patterns of jet injectors: application to photodynamic tumour targeting.
    Donnelly RF; Morrow DI; McCarron PA; Garland MJ; Woolfson AD
    J Photochem Photobiol B; 2007 Dec; 89(2-3):98-109. PubMed ID: 17962035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of jet speed on large volume jet injection.
    McKeage JW; Ruddy BP; Nielsen PMF; Taberner AJ
    J Control Release; 2018 Jun; 280():51-57. PubMed ID: 29723614
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Needle-free injection--science fiction or comeback of an almost forgotten drug delivery system?].
    Ziegler A
    Med Monatsschr Pharm; 2007 Aug; 30(8):297-303. PubMed ID: 17879809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Jet injection devices for the needle-free administration of compounds, vaccines, and other agents.
    Logomasini MA; Stout RR; Marcinkoski R
    Int J Pharm Compd; 2013; 17(4):270-80. PubMed ID: 24261141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Needle-free delivery of macromolecules across the skin by nanoliter-volume pulsed microjets.
    Arora A; Hakim I; Baxter J; Rathnasingham R; Srinivasan R; Fletcher DA; Mitragotri S
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4255-60. PubMed ID: 17360511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study.
    Schlich M; Lai F; Murgia S; Valenti D; Fadda AM; Sinico C
    Biomed Microdevices; 2016 Aug; 18(4):67. PubMed ID: 27422107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Development of a novel liquid injection system].
    Chen K; Lv YG
    Zhongguo Yi Liao Qi Xie Za Zhi; 2009 Nov; 33(6):410-2. PubMed ID: 20352911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug injection and dispersion characteristics of an air-powered needle-free injector.
    Zhu Y; Kang C; Cai W; Huang C
    Med Eng Phys; 2022 Nov; 109():103906. PubMed ID: 36371083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors.
    Mohizin A; Kim JK
    Comput Biol Med; 2020 Mar; 118():103642. PubMed ID: 32174321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of drug viscosity used in gas-powered liquid jet injectors.
    Portaro R; Nakayama H; Ng HD
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7354-7. PubMed ID: 26737990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A needle-free technique for interstitial fluid sample acquisition using a lorentz-force actuated jet injector.
    Chang JH; Hogan NC; Hunter IW
    J Control Release; 2015 Aug; 211():37-43. PubMed ID: 25979330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prestress as an optimal biomechanical parameter for needle penetration.
    Butz KD; Griebel AJ; Novak T; Harris K; Kornokovich A; Chiappetta MF; Neu CP
    J Biomech; 2012 Apr; 45(7):1176-9. PubMed ID: 22381739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Possibility and effectiveness of drug delivery to skin by needle-free injector.
    Inoue N; Todo H; Iidaka D; Tokudome Y; Hashimoto F; Kishino T; Sugibayashi K
    Int J Pharm; 2010 May; 391(1-2):65-72. PubMed ID: 20170719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Viscous Heating Assists Jet Formation During Needle-Free Jet Injection of Viscous Drugs.
    Williams RMJ; McKeage JW; Ruddy BP; Nielsen PMF; Taberner AJ
    IEEE Trans Biomed Eng; 2019 Dec; 66(12):3472-3479. PubMed ID: 30932817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study.
    Seok J; Oh CT; Kwon HJ; Kwon TR; Choi EJ; Choi SY; Mun SK; Han SH; Kim BJ; Kim MN
    Lasers Surg Med; 2016 Aug; 48(6):624-8. PubMed ID: 27075398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel method of drug delivery for fibrinolysis with Ho:YAG laser-induced liquid jet.
    Hirano T; Komatsu M; Uenohara H; Takahashi A; Takayama K; Yoshimoto T
    Lasers Med Sci; 2002; 17(3):165-72. PubMed ID: 12181631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mucosal deformation from an impinging transonic gas jet and the ballistic impact of microparticles.
    Hardy MP; Kendall MA
    Phys Med Biol; 2005 Oct; 50(19):4567-80. PubMed ID: 16177490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of jet shape on jet injection.
    Park G; Modak A; Hogan NC; Hunter IW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7350-3. PubMed ID: 26737989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigations of needle-free jet injections.
    Schramm-Baxter JR; Mitragotri S
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3543-6. PubMed ID: 17271055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.