BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16278310)

  • 1. Targeting receptor kinases by a novel indolinone derivative in multiple myeloma: abrogation of stroma-derived interleukin-6 secretion and induction of apoptosis in cytogenetically defined subgroups.
    Bisping G; Kropff M; Wenning D; Dreyer B; Bessonov S; Hilberg F; Roth GJ; Munzert G; Stefanic M; Stelljes M; Scheffold C; Müller-Tidow C; Liebisch P; Lang N; Tchinda J; Serve HL; Mesters RM; Berdel WE; Kienast J
    Blood; 2006 Mar; 107(5):2079-89. PubMed ID: 16278310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined treatment with the checkpoint abrogator UCN-01 and MEK1/2 inhibitors potently induces apoptosis in drug-sensitive and -resistant myeloma cells through an IL-6-independent mechanism.
    Dai Y; Landowski TH; Rosen ST; Dent P; Grant S
    Blood; 2002 Nov; 100(9):3333-43. PubMed ID: 12384435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BIRB 796 enhances cytotoxicity triggered by bortezomib, heat shock protein (Hsp) 90 inhibitor, and dexamethasone via inhibition of p38 mitogen-activated protein kinase/Hsp27 pathway in multiple myeloma cell lines and inhibits paracrine tumour growth.
    Yasui H; Hideshima T; Ikeda H; Jin J; Ocio EM; Kiziltepe T; Okawa Y; Vallet S; Podar K; Ishitsuka K; Richardson PG; Pargellis C; Moss N; Raje N; Anderson KC
    Br J Haematol; 2007 Feb; 136(3):414-23. PubMed ID: 17173546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human anti-CD40 antagonist antibody triggers significant antitumor activity against human multiple myeloma.
    Tai YT; Li X; Tong X; Santos D; Otsuki T; Catley L; Tournilhac O; Podar K; Hideshima T; Schlossman R; Richardson P; Munshi NC; Luqman M; Anderson KC
    Cancer Res; 2005 Jul; 65(13):5898-906. PubMed ID: 15994968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications.
    Gupta D; Treon SP; Shima Y; Hideshima T; Podar K; Tai YT; Lin B; Lentzsch S; Davies FE; Chauhan D; Schlossman RL; Richardson P; Ralph P; Wu L; Payvandi F; Muller G; Stirling DI; Anderson KC
    Leukemia; 2001 Dec; 15(12):1950-61. PubMed ID: 11753617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3'-kinase/AKT signaling.
    Tai YT; Podar K; Catley L; Tseng YH; Akiyama M; Shringarpure R; Burger R; Hideshima T; Chauhan D; Mitsiades N; Richardson P; Munshi NC; Kahn CR; Mitsiades C; Anderson KC
    Cancer Res; 2003 Sep; 63(18):5850-8. PubMed ID: 14522909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth inhibition and induction of apoptosis in acute myeloid leukemia cells by new indolinone derivatives targeting fibroblast growth factor, platelet-derived growth factor, and vascular endothelial growth factor receptors.
    Kulimova E; Oelmann E; Bisping G; Kienast J; Mesters RM; Schwäble J; Hilberg F; Roth GJ; Munzert G; Stefanic M; Steffen B; Brandts C; Müller-Tidow C; Kolkmeyer A; Büchner T; Serve H; Berdel WE
    Mol Cancer Ther; 2006 Dec; 5(12):3105-12. PubMed ID: 17172413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis.
    Bharti AC; Shishodia S; Reuben JM; Weber D; Alexanian R; Raj-Vadhan S; Estrov Z; Talpaz M; Aggarwal BB
    Blood; 2004 Apr; 103(8):3175-84. PubMed ID: 15070700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activating mutations in STAT3 and STAT5 differentially affect cellular proliferation and apoptotic resistance in multiple myeloma cells.
    Hodge DR; Xiao W; Wang LH; Li D; Farrar WL
    Cancer Biol Ther; 2004 Feb; 3(2):188-94. PubMed ID: 14726660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma.
    Derksen PW; Keehnen RM; Evers LM; van Oers MH; Spaargaren M; Pals ST
    Blood; 2002 Feb; 99(4):1405-10. PubMed ID: 11830493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo.
    Hideshima T; Neri P; Tassone P; Yasui H; Ishitsuka K; Raje N; Chauhan D; Podar K; Mitsiades C; Dang L; Munshi N; Richardson P; Schenkein D; Anderson KC
    Clin Cancer Res; 2006 Oct; 12(19):5887-94. PubMed ID: 17020997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms.
    Nefedova Y; Landowski TH; Dalton WS
    Leukemia; 2003 Jun; 17(6):1175-82. PubMed ID: 12764386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo.
    Burger R; Le Gouill S; Tai YT; Shringarpure R; Tassone P; Neri P; Podar K; Catley L; Hideshima T; Chauhan D; Caulder E; Neilan CL; Vaddi K; Li J; Gramatzki M; Fridman JS; Anderson KC
    Mol Cancer Ther; 2009 Jan; 8(1):26-35. PubMed ID: 19139110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors.
    Pei XY; Dai Y; Grant S
    Clin Cancer Res; 2004 Jun; 10(11):3839-52. PubMed ID: 15173093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma.
    Bisping G; Leo R; Wenning D; Dankbar B; Padró T; Kropff M; Scheffold C; Kröger M; Mesters RM; Berdel WE; Kienast J
    Blood; 2003 Apr; 101(7):2775-83. PubMed ID: 12517814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells.
    Wang J; Hendrix A; Hernot S; Lemaire M; De Bruyne E; Van Valckenborgh E; Lahoutte T; De Wever O; Vanderkerken K; Menu E
    Blood; 2014 Jul; 124(4):555-66. PubMed ID: 24928860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting integrin-linked kinase increases apoptosis and decreases invasion of myeloma cell lines and inhibits IL-6 and VEGF secretion from BMSCs.
    Wang X; Zhang Z; Yao C
    Med Oncol; 2011 Dec; 28(4):1596-600. PubMed ID: 20625942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel therapies targeting the myeloma cell and its bone marrow microenvironment.
    Hideshima T; Chauhan D; Podar K; Schlossman RL; Richardson P; Anderson KC
    Semin Oncol; 2001 Dec; 28(6):607-12. PubMed ID: 11740818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis.
    Frassanito MA; Cusmai A; Iodice G; Dammacco F
    Blood; 2001 Jan; 97(2):483-9. PubMed ID: 11154226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma.
    Bisping G; Wenning D; Kropff M; Gustavus D; Müller-Tidow C; Stelljes M; Munzert G; Hilberg F; Roth GJ; Stefanic M; Volpert S; Mesters RM; Berdel WE; Kienast J
    Clin Cancer Res; 2009 Jan; 15(2):520-31. PubMed ID: 19147757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.