These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16278814)

  • 21. CD62L is required for the priming of encephalitogenic T cells but does not play a major role in the effector phase of experimental autoimmune encephalomyelitis.
    Li O; Liu JQ; Zhang H; Zheng P; Liu Y; Bai XF
    Scand J Immunol; 2006 Aug; 64(2):117-24. PubMed ID: 16867156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A common immunoregulatory locus controls susceptibility to actively induced experimental allergic encephalomyelitis and experimental allergic orchitis in BALB/c mice.
    Teuscher C; Hickey WF; Grafer CM; Tung KS
    J Immunol; 1998 Mar; 160(6):2751-6. PubMed ID: 9510176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental autoimmune encephalomyelitis in mice with a targeted deletion of the inducible nitric oxide synthase gene: increased T-helper 1 response.
    Kahl KG; Schmidt HH; Jung S; Sherman P; Toyka KV; Zielasek J
    Neurosci Lett; 2004 Mar; 358(1):58-62. PubMed ID: 15016434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CD4+ICOS+ T lymphocytes inhibit T cell activation 'in vitro' and attenuate autoimmune encephalitis 'in vivo'.
    Rojo JM; Pini E; Ojeda G; Bello R; Dong C; Flavell RA; Dianzani U; Portolés P
    Int Immunol; 2008 Apr; 20(4):577-89. PubMed ID: 18310064
    [TBL] [Abstract][Full Text] [Related]  

  • 25. IL-21 modulates CD4+ CD25+ regulatory T-cell homeostasis in experimental autoimmune encephalomyelitis.
    Piao WH; Jee YH; Liu RL; Coons SW; Kala M; Collins M; Young DA; Campagnolo DI; Vollmer TL; Bai XF; La Cava A; Shi FD
    Scand J Immunol; 2008 Jan; 67(1):37-46. PubMed ID: 18052963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental autoimmune encephalomyelitis develops in CC chemokine receptor 7-deficient mice with altered T-cell responses.
    Pahuja A; Maki RA; Hevezi PA; Chen A; Verge GM; Lechner SM; Roth RB; Zlotnik A; Alleva DG
    Scand J Immunol; 2006 Oct; 64(4):361-9. PubMed ID: 16970675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an animal model for neurocysticercosis: immune response in the central nervous system is characterized by a predominance of gamma delta T cells.
    Cardona AE; Restrepo BI; Jaramillo JM; Teale JM
    J Immunol; 1999 Jan; 162(2):995-1002. PubMed ID: 9916725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of the human Fc receptor Fc gamma RIIA in the immune clearance of platelets: a transgenic mouse model.
    McKenzie SE; Taylor SM; Malladi P; Yuhan H; Cassel DL; Chien P; Schwartz E; Schreiber AD; Surrey S; Reilly MP
    J Immunol; 1999 Apr; 162(7):4311-8. PubMed ID: 10201963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro.
    Carter SL; Müller M; Manders PM; Campbell IL
    Glia; 2007 Dec; 55(16):1728-39. PubMed ID: 17902170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.
    Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W
    Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cutting edge: protective response to pulmonary injury requires gamma delta T lymphocytes.
    King DP; Hyde DM; Jackson KA; Novosad DM; Ellis TN; Putney L; Stovall MY; Van Winkle LS; Beaman BL; Ferrick DA
    J Immunol; 1999 May; 162(9):5033-6. PubMed ID: 10227967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like gammadelta T cells.
    Stewart CA; Walzer T; Robbins SH; Malissen B; Vivier E; Prinz I
    Eur J Immunol; 2007 Jun; 37(6):1442-52. PubMed ID: 17492716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oral administration of 1,4-aryl-2-mercaptoimidazole inhibits T-cell proliferation and reduces clinical severity in the murine experimental autoimmune encephalomyelitis model.
    Jung EJ; Hur M; Kim YL; Lee GH; Kim J; Kim I; Lee M; Han HK; Kim MS; Hwang S; Kim S; Woo AM; Yoon Y; Park HJ; Won J
    J Pharmacol Exp Ther; 2009 Dec; 331(3):1005-13. PubMed ID: 19741152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gammadelta T cells in EAE: early trafficking events and cytokine requirements.
    Wohler JE; Smith SS; Zinn KR; Bullard DC; Barnum SR
    Eur J Immunol; 2009 Jun; 39(6):1516-26. PubMed ID: 19384874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental allergic encephalomyelitis (EAE) in mice: primary control of EAE susceptibility is outside the H-2 complex.
    Montgomery IN; Rauch HC
    J Immunol; 1982 Jan; 128(1):421-5. PubMed ID: 7054282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Susceptibility to actively-induced murine experimental allergic encephalomyelitis is not linked to genes of the T cell receptor or CD3 complexes.
    Livingstone KD; Sudweeks JD; Blankenhorn EP; Hickey WF; Teuscher C
    Autoimmunity; 1995; 21(3):195-201. PubMed ID: 8822277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism.
    Ponomarev ED; Dittel BN
    J Immunol; 2005 Apr; 174(8):4678-87. PubMed ID: 15814692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic identification and functional validation of FcγRIV as key molecule in autoantibody-induced tissue injury.
    Kasperkiewicz M; Nimmerjahn F; Wende S; Hirose M; Iwata H; Jonkman MF; Samavedam U; Gupta Y; Möller S; Rentz E; Hellberg L; Kalies K; Yu X; Schmidt E; Häsler R; Laskay T; Westermann J; Köhl J; Zillikens D; Ludwig RJ
    J Pathol; 2012 Sep; 228(1):8-19. PubMed ID: 22430937
    [TBL] [Abstract][Full Text] [Related]  

  • 39. IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection.
    Wang T; Scully E; Yin Z; Kim JH; Wang S; Yan J; Mamula M; Anderson JF; Craft J; Fikrig E
    J Immunol; 2003 Sep; 171(5):2524-31. PubMed ID: 12928402
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice.
    Wang T; Gao Y; Scully E; Davis CT; Anderson JF; Welte T; Ledizet M; Koski R; Madri JA; Barrett A; Yin Z; Craft J; Fikrig E
    J Immunol; 2006 Aug; 177(3):1825-32. PubMed ID: 16849493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.