BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 16279203)

  • 1. [Relationship between key enzyme activities of inosine-producing pathway and inosine accumulation].
    Song Y; Cai X; Chu J; Zhuang Y; Zhang S
    Wei Sheng Wu Xue Bao; 2003 Jun; 43(3):361-5. PubMed ID: 16279203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of gene-targeted Bacillus subtilis mutations that enhance fermentative inosine production.
    Asahara T; Mori Y; Zakataeva NP; Livshits VA; Yoshida K; Matsuno K
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2195-207. PubMed ID: 20524113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of adenylosuccinate synthetase from Bacillus subtilis and its application in metabolic engineering.
    Wang X; Wang G; Li X; Fu J; Chen T; Wang Z; Zhao X
    J Biotechnol; 2016 Aug; 231():115-121. PubMed ID: 27234879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide mutations in purA gene and pur operon promoter discovered in guanosine- and inosine-producing Bacillus subtilis strains.
    Qian J; Cai X; Chu J; Zhuang Y; Zhang S
    Biotechnol Lett; 2006 Jun; 28(12):937-41. PubMed ID: 16786280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased production of inosine and guanosine by means of metabolic engineering of the purine pathway in Ashbya gossypii.
    Ledesma-Amaro R; Buey RM; Revuelta JL
    Microb Cell Fact; 2015 Apr; 14():58. PubMed ID: 25889888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corynebacterium glutamicum tailored for high-yield L-valine production.
    Blombach B; Schreiner ME; Bartek T; Oldiges M; Eikmanns BJ
    Appl Microbiol Biotechnol; 2008 Jun; 79(3):471-9. PubMed ID: 18379776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purine de novo synthesis and enzymes at the inosinic branch point in human lymphocytes.
    Marinello E; Pagani R; Carlucci F; Pizzichini M; Valerio P; Molinelli M; Dispensa E; Tabucchi A
    Biochem Soc Trans; 1991 Aug; 19(3):343S. PubMed ID: 1723703
    [No Abstract]   [Full Text] [Related]  

  • 8. De novo engineering and metabolic flux analysis of inosine biosynthesis in Bacillus subtilis.
    Li H; Zhang G; Deng A; Chen N; Wen T
    Biotechnol Lett; 2011 Aug; 33(8):1575-80. PubMed ID: 21424839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation of an inosine-producing strain of Bacillus subtilis to DL-methionine sulfoxide resistance for guanosine production.
    Matsui H; Sato K; Enei H; Hirose Y
    Appl Environ Microbiol; 1977 Oct; 34(4):337-41. PubMed ID: 21611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Enzymes of the inosinic crossing point in human lymphocytes].
    Tabucchi A; Vannoni D; Porcelli B; Di Stefano A; Pizzichini M; Leoncini R; Dispensa E; Marinello E
    Boll Soc Ital Biol Sper; 1990 May; 66(5):449-55. PubMed ID: 1975748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel variant L263F in human inosine 5'-monophosphate dehydrogenase 2 is associated with diminished enzyme activity.
    Wang J; Zeevi A; Webber S; Girnita DM; Addonizio L; Selby R; Hutchinson IV; Burckart GJ
    Pharmacogenet Genomics; 2007 Apr; 17(4):283-90. PubMed ID: 17496727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removing a bottleneck in the Bacillus subtilis biotin pathway: bioA utilizes lysine rather than S-adenosylmethionine as the amino donor in the KAPA-to-DAPA reaction.
    Van Arsdell SW; Perkins JB; Yocum RR; Luan L; Howitt CL; Chatterjee NP; Pero JG
    Biotechnol Bioeng; 2005 Jul; 91(1):75-83. PubMed ID: 15880481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased fermentative adenosine production by gene-targeted Bacillus subtilis mutation.
    Li B; Yan ZY; Liu XN; Zhou J; Wu XY; Wei P; Jia HH; Yong XY
    J Biotechnol; 2019 Jun; 298():1-4. PubMed ID: 30974118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of overexpression of key enzyme genes on guanosine accumulation in Bacillus amyloliquefaciens].
    He K; Ma Y; Du S; Xie X; Xu Q; Chen N
    Wei Sheng Wu Xue Bao; 2012 Jun; 52(6):718-25. PubMed ID: 22934352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apparent inactivation of inosine 5'-monophosphate dehydrogenase in sporulating Bacillus subtilis Is an artifact of in vitro proteolysis.
    Maurizi MR; Switzer RL
    J Bacteriol; 1975 Sep; 123(3):1269-72. PubMed ID: 808535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Whole-genome sequencing and analysis of inosine- producing strain Bacillus subtilis ATCC 13952].
    Li E; Yang H; Wang X; Wan L; Pan H; Zhu D
    Wei Sheng Wu Xue Bao; 2015 Dec; 55(12):1560-7. PubMed ID: 27101698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833.
    Wu Q; Xu H; Shi N; Yao J; Li S; Ouyang P
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):527-35. PubMed ID: 18443783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of riboflavin production by overexpression of acetolactate synthase in a pta mutant of Bacillus subtilis.
    Zhu Y; Chen X; Chen T; Zhao X
    FEMS Microbiol Lett; 2007 Jan; 266(2):224-30. PubMed ID: 17233734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convergent evolution of nitrogen-adding enzymes in the purine nucleotide biosynthetic pathway, based on structural analysis of adenylosuccinate synthetase (PurA).
    Sampei GI; Ishii H; Taka H; Kawai G
    J Gen Appl Microbiol; 2023 Nov; 69(2):109-116. PubMed ID: 37302828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular identification of omega-amidase, the enzyme that is functionally coupled with glutamine transaminases, as the putative tumor suppressor Nit2.
    Jaisson S; Veiga-da-Cunha M; Van Schaftingen E
    Biochimie; 2009 Sep; 91(9):1066-71. PubMed ID: 19596042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.