These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16279471)

  • 1. Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate.
    Sasaki Y; Avetisyan Y; Yokoyama H; Ito H
    Opt Lett; 2005 Nov; 30(21):2927-9. PubMed ID: 16279471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves.
    Suizu K; Suzuki Y; Sasaki Y; Ito H; Avetisyan Y
    Opt Lett; 2006 Apr; 31(7):957-9. PubMed ID: 16599224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG.
    Dolasinski B; Powers PE; Haus JW; Cooney A
    Opt Express; 2015 Feb; 23(3):3669-80. PubMed ID: 25836219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate.
    Zhang C; Avetisyan Y; Glosser A; Kawayama I; Murakami H; Tonouchi M
    Opt Express; 2012 Apr; 20(8):8784-90. PubMed ID: 22513589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion efficiency improvement of terahertz wave generation laterally emitted by a ridge-type periodically poled lithium niobate.
    Hamazaki J; Ogawa Y; Kishimoto T; Hayashi S; Sekine N; Hosako I
    Opt Express; 2022 Mar; 30(7):11472-11478. PubMed ID: 35473090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.
    Weiss C; Torosyan G; Avetisyan Y; Beigang R
    Opt Lett; 2001 Apr; 26(8):563-5. PubMed ID: 18040386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate.
    Ahr F; Jolly SW; Matlis NH; Carbajo S; Kroh T; Ravi K; Schimpf DN; Schulte J; Ishizuki H; Taira T; Maier AR; Kärtner FX
    Opt Lett; 2017 Jun; 42(11):2118-2121. PubMed ID: 28569860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forward and backward terahertz-wave difference-frequency generations from periodically poled lithium niobate.
    Wang TD; Lin ST; Lin YY; Chiang AC; Huang YC
    Opt Express; 2008 Apr; 16(9):6471-8. PubMed ID: 18545351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate.
    Kawase K; Hatanaka T; Takahashi H; Nakamura K; Taniuchi T; Ito H
    Opt Lett; 2000 Dec; 25(23):1714-6. PubMed ID: 18066323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals.
    Kiessling J; Sowade R; Breunig I; Buse K; Dierolf V
    Opt Express; 2009 Jan; 17(1):87-91. PubMed ID: 19129876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient generation of backward terahertz pulses from multiperiod periodically poled lithium niobate.
    Xu G; Mu X; Ding YJ; Zotova IB
    Opt Lett; 2009 Apr; 34(7):995-7. PubMed ID: 19340196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of magnetic field on terahertz wave generation in photorefractive periodically poled lithium niobate crystal.
    Li G; Li D; Ma G; Liu W; Tang SH
    Appl Opt; 2011 Mar; 50(8):1082-6. PubMed ID: 21394179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded DFG via quasi-phase matching with Cherenkov-type PPLN for highly efficient terahertz generation.
    Huang J; Rao Z; Xie F
    Opt Express; 2019 Jun; 27(12):17199-17208. PubMed ID: 31252933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs.
    Schaar JE; Vodopyanov KL; Fejer MM
    Opt Lett; 2007 May; 32(10):1284-6. PubMed ID: 17440562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of uncertain phase-matching wave vectors of rotating fan-out type poled LiNbO3 on THz generation.
    Kang C; Lee YL; Jung C; Yoo HK; Kee CS
    Opt Express; 2010 Sep; 18(20):21484-9. PubMed ID: 20941044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable backward terahertz-wave parametric oscillator centered at a high frequency of 0.87 THz with injection seeding.
    Muldera JE; Nawata K; Takida Y; Yadav D; Minamide H
    Opt Express; 2023 Jul; 31(15):23966-23973. PubMed ID: 37475236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-area periodically-poled lithium niobate wafer stacks optimized for high-energy narrowband terahertz generation.
    Mosley CDW; Lake DS; Graham DM; Jamison SP; Appleby RB; Burt G; Hibberd MT
    Opt Express; 2023 Jan; 31(3):4041-4054. PubMed ID: 36785381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation.
    Sasaki Y; Yokoyama H; Ito H
    Opt Express; 2004 Jul; 12(14):3066-71. PubMed ID: 19483825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-harmonic generation of an optical frequency comb at 1.55 microm with periodically poled lithium niobate.
    Widiyatmoko B; Imai K; Kourogi M; Ohtsu M
    Opt Lett; 1999 Mar; 24(5):315-7. PubMed ID: 18071491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. µJ-level multi-cycle terahertz generation in a periodically poled Rb:KTP crystal.
    Tian W; Cirmi G; Olgun HT; Mutter P; Canalias C; Zukauskas A; Wang L; Kueny E; Ahr F; Calendron AL; Reichert F; Hasse K; Hua Y; Schimpf DN; Çankaya H; Pergament M; Hemmer M; Matlis N; Pasiskevicius V; Laurell F; Kärtner FX
    Opt Lett; 2021 Feb; 46(4):741-744. PubMed ID: 33577503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.