These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 16280201)
1. Temporal changes in cellular energy following burn injury. Gore DC; Rinehart A; Asimakis G Burns; 2005 Dec; 31(8):998-1002. PubMed ID: 16280201 [TBL] [Abstract][Full Text] [Related]
2. [Changes in liver metabolism following a standardized skin burn and intraperitoneal injection of a burn toxin isolated from burned mice skin. Studies on rat liver using isolation perfusion]. Schölmerich J; Schmidt K; Kremer B; Hagmeier V; Mastari H; Hermawan S Chir Forum Exp Klin Forsch; 1977 Apr; ():140-4. PubMed ID: 618292 [TBL] [Abstract][Full Text] [Related]
3. Changes in hepatic energy metabolism in experimental acute pancreatitis. Yan LN; Ozawa K; Kobayashi N Chin Med J (Engl); 1992 Aug; 105(8):684-8. PubMed ID: 1458973 [TBL] [Abstract][Full Text] [Related]
4. [Changes in hepatic energy metabolism in rats with acute necrotizing pancreatitis]. Yan LN Zhonghua Wai Ke Za Zhi; 1990 May; 28(5):295-7, 318-9. PubMed ID: 2086101 [TBL] [Abstract][Full Text] [Related]
5. Sepsis-induced failure of hepatic energy metabolism. Hart DW; Gore DC; Rinehart AJ; Asimakis GK; Chinkes DL J Surg Res; 2003 Nov; 115(1):139-47. PubMed ID: 14572785 [TBL] [Abstract][Full Text] [Related]
6. Hepatic energy metabolism and the differential protective effects of sevoflurane and isoflurane anesthesia in a rat hepatic ischemia-reperfusion injury model. Bedirli N; Ofluoglu E; Kerem M; Utebey G; Alper M; Yilmazer D; Bedirli A; Ozlu O; Pasaoglu H Anesth Analg; 2008 Mar; 106(3):830-7, table of contents. PubMed ID: 18292427 [TBL] [Abstract][Full Text] [Related]
7. [Pathophysiology of burns]. Kremer B; Schölmerich J; Allgöwer M; Schmidt KH; Schweitzer A; Schoenenberger GA Helv Chir Acta; 1978 May; 45(1-2):147-51. PubMed ID: 659233 [TBL] [Abstract][Full Text] [Related]
8. Lack of effect of sleep on energy expenditure and physiologic measures in critically ill burn patients. Gottschlich MM; Jenkins M; Mayes T; Khoury J; Kagan R; Warden GD J Am Diet Assoc; 1997 Feb; 97(2):131-9. PubMed ID: 9020239 [TBL] [Abstract][Full Text] [Related]
10. [Independence of the (NAD+):(NADH) ratio from the adenylic system in the liver cytoplasm of the developing chick embryo]. Ermolaeva LP; Iurovitskiĭ IuG; Mil'man LS Ontogenez; 1979; 10(4):413-6. PubMed ID: 225704 [TBL] [Abstract][Full Text] [Related]
11. Effect of varying burn sizes and ambient temperature on the hypermetabolic rate in thermally injured rats. Barrow RE; Meyer NA; Jeschke MG J Surg Res; 2001 Aug; 99(2):253-7. PubMed ID: 11469894 [TBL] [Abstract][Full Text] [Related]
12. [Disturbed cellular energy metabolism in burns. Studies of rat liver]. Schölmerich J; Kremer B; Schmidt K; Setyadharma H; Schoenenberger GA Acta Biol Med Ger; 1980; 39(10):1051-72. PubMed ID: 7223255 [TBL] [Abstract][Full Text] [Related]
13. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs. Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335 [TBL] [Abstract][Full Text] [Related]
14. Adenosine A1 and A2 receptor agonists reduce endotoxin-induced cellular energy depletion and oedema formation in the lung. Heller AR; Rothermel J; Weigand MA; Plaschke K; Schmeck J; Wendel M; Bardenheuer HJ; Koch T Eur J Anaesthesiol; 2007 Mar; 24(3):258-66. PubMed ID: 17094869 [TBL] [Abstract][Full Text] [Related]
15. [Peculiarities of disturbances in oxidation and phosphorylation processes in rat liver under the effect of mononitrophenols]. Kolodib FA; Vasilenko NM Ukr Biokhim Zh; 1976; 48(1):30-3. PubMed ID: 176756 [TBL] [Abstract][Full Text] [Related]
16. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km). Reed RD; Pace N Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568 [TBL] [Abstract][Full Text] [Related]
17. The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia. Morris S; van Aardt WJ; Ahern MD Aquat Toxicol; 2005 Oct; 75(1):16-31. PubMed ID: 16083977 [TBL] [Abstract][Full Text] [Related]
18. Expression profiling analysis of the metabolic and inflammatory changes following burn injury in rats. Vemula M; Berthiaume F; Jayaraman A; Yarmush ML Physiol Genomics; 2004 Jun; 18(1):87-98. PubMed ID: 15114001 [TBL] [Abstract][Full Text] [Related]
19. Functional changes of the NADH respiratory chain in rat-liver mitochondria and the content changes of high-energy phosphate groups in rat liver and heart during the early phase of burn injury. Wang XM; Chen KM; Shi Y; Shi HP Burns; 1990 Oct; 16(5):377-80. PubMed ID: 2275769 [TBL] [Abstract][Full Text] [Related]
20. [Correlation between [NAD+]:[NADH] and the "phosphate potential" in liver cytoplasm of developing chicken embryos]. Ermolaeva LP Biokhimiia; 1981 Jun; 46(6):1127-32. PubMed ID: 7260198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]