BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16280201)

  • 1. Temporal changes in cellular energy following burn injury.
    Gore DC; Rinehart A; Asimakis G
    Burns; 2005 Dec; 31(8):998-1002. PubMed ID: 16280201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes in liver metabolism following a standardized skin burn and intraperitoneal injection of a burn toxin isolated from burned mice skin. Studies on rat liver using isolation perfusion].
    Schölmerich J; Schmidt K; Kremer B; Hagmeier V; Mastari H; Hermawan S
    Chir Forum Exp Klin Forsch; 1977 Apr; ():140-4. PubMed ID: 618292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in hepatic energy metabolism in experimental acute pancreatitis.
    Yan LN; Ozawa K; Kobayashi N
    Chin Med J (Engl); 1992 Aug; 105(8):684-8. PubMed ID: 1458973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Changes in hepatic energy metabolism in rats with acute necrotizing pancreatitis].
    Yan LN
    Zhonghua Wai Ke Za Zhi; 1990 May; 28(5):295-7, 318-9. PubMed ID: 2086101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sepsis-induced failure of hepatic energy metabolism.
    Hart DW; Gore DC; Rinehart AJ; Asimakis GK; Chinkes DL
    J Surg Res; 2003 Nov; 115(1):139-47. PubMed ID: 14572785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic energy metabolism and the differential protective effects of sevoflurane and isoflurane anesthesia in a rat hepatic ischemia-reperfusion injury model.
    Bedirli N; Ofluoglu E; Kerem M; Utebey G; Alper M; Yilmazer D; Bedirli A; Ozlu O; Pasaoglu H
    Anesth Analg; 2008 Mar; 106(3):830-7, table of contents. PubMed ID: 18292427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Pathophysiology of burns].
    Kremer B; Schölmerich J; Allgöwer M; Schmidt KH; Schweitzer A; Schoenenberger GA
    Helv Chir Acta; 1978 May; 45(1-2):147-51. PubMed ID: 659233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of effect of sleep on energy expenditure and physiologic measures in critically ill burn patients.
    Gottschlich MM; Jenkins M; Mayes T; Khoury J; Kagan R; Warden GD
    J Am Diet Assoc; 1997 Feb; 97(2):131-9. PubMed ID: 9020239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of endotoxin tolerance in transgenic mouse liver expressing creatine kinase.
    Hatano E; Tanaka A; Iwata S; Satoh S; Kitai T; Tsunekawa S; Inomoto T; Shinohara H; Chance B; Yamaoka Y
    Hepatology; 1996 Sep; 24(3):663-9. PubMed ID: 8781340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Independence of the (NAD+):(NADH) ratio from the adenylic system in the liver cytoplasm of the developing chick embryo].
    Ermolaeva LP; Iurovitskiĭ IuG; Mil'man LS
    Ontogenez; 1979; 10(4):413-6. PubMed ID: 225704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of varying burn sizes and ambient temperature on the hypermetabolic rate in thermally injured rats.
    Barrow RE; Meyer NA; Jeschke MG
    J Surg Res; 2001 Aug; 99(2):253-7. PubMed ID: 11469894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Disturbed cellular energy metabolism in burns. Studies of rat liver].
    Schölmerich J; Kremer B; Schmidt K; Setyadharma H; Schoenenberger GA
    Acta Biol Med Ger; 1980; 39(10):1051-72. PubMed ID: 7223255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adenosine A1 and A2 receptor agonists reduce endotoxin-induced cellular energy depletion and oedema formation in the lung.
    Heller AR; Rothermel J; Weigand MA; Plaschke K; Schmeck J; Wendel M; Bardenheuer HJ; Koch T
    Eur J Anaesthesiol; 2007 Mar; 24(3):258-66. PubMed ID: 17094869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Peculiarities of disturbances in oxidation and phosphorylation processes in rat liver under the effect of mononitrophenols].
    Kolodib FA; Vasilenko NM
    Ukr Biokhim Zh; 1976; 48(1):30-3. PubMed ID: 176756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy status and oxidation-reduction status in rat liver at high altitude (3.8 km).
    Reed RD; Pace N
    Aviat Space Environ Med; 1980 May; 51(5):448-53. PubMed ID: 7387568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia.
    Morris S; van Aardt WJ; Ahern MD
    Aquat Toxicol; 2005 Oct; 75(1):16-31. PubMed ID: 16083977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression profiling analysis of the metabolic and inflammatory changes following burn injury in rats.
    Vemula M; Berthiaume F; Jayaraman A; Yarmush ML
    Physiol Genomics; 2004 Jun; 18(1):87-98. PubMed ID: 15114001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional changes of the NADH respiratory chain in rat-liver mitochondria and the content changes of high-energy phosphate groups in rat liver and heart during the early phase of burn injury.
    Wang XM; Chen KM; Shi Y; Shi HP
    Burns; 1990 Oct; 16(5):377-80. PubMed ID: 2275769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Correlation between [NAD+]:[NADH] and the "phosphate potential" in liver cytoplasm of developing chicken embryos].
    Ermolaeva LP
    Biokhimiia; 1981 Jun; 46(6):1127-32. PubMed ID: 7260198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.