These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
759 related articles for article (PubMed ID: 16280412)
1. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors. Dzhura EV; He W; Currie KP J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412 [TBL] [Abstract][Full Text] [Related]
2. CCCP enhances catecholamine release from the perfused rat adrenal medulla. Lim DY; Park HG; Miwa S Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015 [TBL] [Abstract][Full Text] [Related]
3. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells. Polo-Parada L; Chan SA; Smith C Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713 [TBL] [Abstract][Full Text] [Related]
4. Pituitary adenylate cyclase-activating polypeptide induces a sustained increase in intracellular free Ca(2+) concentration and catechol amine release by activating Ca(2+) influx via receptor-stimulated Ca(2+) entry, independent of store-operated Ca(2+) channels, and voltage-dependent Ca(2+) channels in bovine adrenal medullary chromaffin cells. Morita K; Sakakibara A; Kitayama S; Kumagai K; Tanne K; Dohi T J Pharmacol Exp Ther; 2002 Sep; 302(3):972-82. PubMed ID: 12183654 [TBL] [Abstract][Full Text] [Related]
5. Effects of expression of a mouse brain L-type calcium channel alpha 1 subunit on secretion from bovine adrenal chromaffin cells. Wick PF; Westenbroek RE; Holz RW Mol Pharmacol; 1996 Feb; 49(2):295-302. PubMed ID: 8632762 [TBL] [Abstract][Full Text] [Related]
6. Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells. Wu PC; Fann MJ; Kao LS J Neurochem; 2010 Mar; 112(5):1210-22. PubMed ID: 20002295 [TBL] [Abstract][Full Text] [Related]
7. Effect of anabasine on catecholamine secretion from the perfused rat adrenal medulla. Hong SP; Jeong MG; Lim DY J Cardiol; 2007 Dec; 50(6):351-62. PubMed ID: 18186309 [TBL] [Abstract][Full Text] [Related]
8. Effects of nonylphenol on the calcium signal and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells. Liu PS; Liu GH; Chao WL Toxicology; 2008 Feb; 244(1):77-85. PubMed ID: 18093714 [TBL] [Abstract][Full Text] [Related]
9. Different contributions of voltage-sensitive Ca2+ channels to histamine-induced catecholamine release and tyrosine hydroxylase activation in bovine adrenal chromaffin cells. O'Farrell M; Marley PD Cell Calcium; 1999 Mar; 25(3):209-17. PubMed ID: 10378082 [TBL] [Abstract][Full Text] [Related]
11. A choline-evoked [Ca2+]c signal causes catecholamine release and hyperpolarization of chromaffin cells. Fuentealba J; Olivares R; Alés E; Tapia L; Rojo J; Arroyo G; Aldea M; Criado M; Gandía L; García AG FASEB J; 2004 Sep; 18(12):1468-70. PubMed ID: 15231719 [TBL] [Abstract][Full Text] [Related]
13. Dual effects of nobiletin, a citrus polymethoxy flavone, on catecholamine secretion in cultured bovine adrenal medullary cells. Zhang H; Toyohira Y; Ueno S; Shinohara Y; Itoh H; Furuno Y; Yamakuni T; Tsutsui M; Takahashi K; Yanagihara N J Neurochem; 2010 Aug; 114(4):1030-8. PubMed ID: 20533991 [TBL] [Abstract][Full Text] [Related]
14. Catecholamine secretion induced by nicotine is due to Ca++ channel but not Na+ channel activation in porcine adrenal chromaffin cells. Li Q; Forsberg EJ J Pharmacol Exp Ther; 1996 Jun; 277(3):1209-14. PubMed ID: 8667180 [TBL] [Abstract][Full Text] [Related]
15. Lithium inhibits function of voltage-dependent sodium channels and catecholamine secretion independent of glycogen synthase kinase-3 in adrenal chromaffin cells. Yanagita T; Maruta T; Uezono Y; Satoh S; Yoshikawa N; Nemoto T; Kobayashi H; Wada A Neuropharmacology; 2007 Dec; 53(7):881-9. PubMed ID: 17950380 [TBL] [Abstract][Full Text] [Related]
16. Progesterone regulation of catecholamine secretion from chromaffin cells. Armstrong SM; Stuenkel EL Brain Res; 2005 May; 1043(1-2):76-86. PubMed ID: 15862520 [TBL] [Abstract][Full Text] [Related]
17. Sigma-1 receptor ligands inhibit catecholamine secretion from adrenal chromaffin cells due to block of nicotinic acetylcholine receptors. Brindley RL; Bauer MB; Hartley ND; Horning KJ; Currie KPM J Neurochem; 2017 Oct; 143(2):171-182. PubMed ID: 28815595 [TBL] [Abstract][Full Text] [Related]
18. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores. Zerbes M; Clark CL; Powis DA Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355 [TBL] [Abstract][Full Text] [Related]
19. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells. Pérez-Alvarez A; Albillos A J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397 [TBL] [Abstract][Full Text] [Related]
20. Calcium channels in chromaffin cells: focus on L and T types. Marcantoni A; Carabelli V; Comunanza V; Hoddah H; Carbone E Acta Physiol (Oxf); 2008 Feb; 192(2):233-46. PubMed ID: 18021322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]