BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 16281983)

  • 1. Preferential attachment in the evolution of metabolic networks.
    Light S; Kraulis P; Elofsson A
    BMC Genomics; 2005 Nov; 6():159. PubMed ID: 16281983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of horizontal gene transfer in shaping operons and protein interaction networks--direct evidence of preferential attachment.
    Davids W; Zhang Z
    BMC Evol Biol; 2008 Jan; 8():23. PubMed ID: 18218112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erosion of interaction networks in reduced and degraded genomes.
    Ochman H; Liu R; Rocha EP
    J Exp Zool B Mol Dev Evol; 2007 Jan; 308(1):97-103. PubMed ID: 17219366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential attachment in the protein network evolution.
    Eisenberg E; Levanon EY
    Phys Rev Lett; 2003 Sep; 91(13):138701. PubMed ID: 14525344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer.
    Pál C; Papp B; Lercher MJ
    Nat Genet; 2005 Dec; 37(12):1372-5. PubMed ID: 16311593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the differences in metabolic network expansion between prokaryotes and eukaryotes.
    Tanaka M; Yamada T; Itoh M; Okuda S; Goto S; Kanehisa M
    Genome Inform; 2006; 17(1):230-9. PubMed ID: 17503372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexity, connectivity, and duplicability as barriers to lateral gene transfer.
    Wellner A; Lurie MN; Gophna U
    Genome Biol; 2007; 8(8):R156. PubMed ID: 17678544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity.
    Takemoto K; Oosawa C
    Math Biosci; 2007 Aug; 208(2):454-68. PubMed ID: 17300817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of log-normal dynamics in the evolution of biochemical pathways.
    Nacher JC; Ochiai T; Yamada T; Kanehisa M; Akutsu T
    Biosystems; 2006 Jan; 83(1):26-37. PubMed ID: 16236424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical basis of metabolic network organization.
    Zhu Q; Qin T; Jiang YY; Ji C; Kong DX; Ma BG; Zhang HY
    PLoS Comput Biol; 2011 Oct; 7(10):e1002214. PubMed ID: 22022254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene duplication and hierarchical modularity in intracellular interaction networks.
    Hallinan J
    Biosystems; 2004; 74(1-3):51-62. PubMed ID: 15125992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
    Jardine O; Gough J; Chothia C; Teichmann SA
    Genome Res; 2002 Jun; 12(6):916-29. PubMed ID: 12045145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly rules for protein networks derived from phylogenetic-statistical analysis of whole genomes.
    Pagel M; Meade A; Scott D
    BMC Evol Biol; 2007 Feb; 7 Suppl 1(Suppl 1):S16. PubMed ID: 17288574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution in large genetic networks: does connectivity equal constraint?
    Hahn MW; Conant GC; Wagner A
    J Mol Evol; 2004 Feb; 58(2):203-11. PubMed ID: 15042341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical analysis of global connectivity and activity distributions in cellular networks.
    López García De Lomana A; Beg QK; De Fabritiis G; Villà-Freixa J
    J Comput Biol; 2010 Jul; 17(7):869-78. PubMed ID: 20632868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Birth and death of protein domains: a simple model of evolution explains power law behavior.
    Karev GP; Wolf YI; Rzhetsky AY; Berezovskaya FS; Koonin EV
    BMC Evol Biol; 2002 Oct; 2():18. PubMed ID: 12379152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Each of 3,323 metabolic innovations in the evolution of
    Pang TY; Lercher MJ
    Proc Natl Acad Sci U S A; 2019 Jan; 116(1):187-192. PubMed ID: 30563853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli.
    Price MN; Dehal PS; Arkin AP
    Genome Biol; 2008 Jan; 9(1):R4. PubMed ID: 18179685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of metabolic enzymes in Plasmodium and trypanosomatids as compared to Saccharomyces and Schizosaccharomyces.
    Palenchar PM; Palenchar JB
    Mol Biochem Parasitol; 2012 Jul; 184(1):13-9. PubMed ID: 22498309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.