These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 16283285)
1. Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis. Pinto Gama HP; da Rocha AJ; Braga FT; da Silva CJ; Maia AC; de Campos Meirelles RG; Mendonça do Rego JI; Lederman HM Pediatr Radiol; 2006 Feb; 36(2):119-25. PubMed ID: 16283285 [TBL] [Abstract][Full Text] [Related]
2. Application of magnetization transfer imaging for intracranial lesions of tuberous sclerosis. Jeong MG; Chung TS; Coe CJ; Jeon TJ; Kim DI; Joo AY J Comput Assist Tomogr; 1997; 21(1):8-14. PubMed ID: 9022761 [TBL] [Abstract][Full Text] [Related]
3. Distribution and conspicuity of intracranial abnormalities on MR imaging in adults with tuberous sclerosis complex: A comparison of sequences including ultrafast T2-weighted images. Griffiths PD; Hoggard N Epilepsia; 2009 Dec; 50(12):2605-10. PubMed ID: 19490046 [TBL] [Abstract][Full Text] [Related]
4. Application of Fluid-Attenuated Inversion Recovery pulse sequence in children with tuberous sclerosis. Chien JC; Peng SS; Liu HM; Huang KM; Li YW Acta Paediatr Taiwan; 1999; 40(6):393-9. PubMed ID: 10927952 [TBL] [Abstract][Full Text] [Related]
5. Improved detection of cortical and subcortical tubers in tuberous sclerosis by fluid-attenuated inversion recovery MRI. Kato T; Yamanouchi H; Sugai K; Takashima S Neuroradiology; 1997 May; 39(5):378-80. PubMed ID: 9189887 [TBL] [Abstract][Full Text] [Related]
6. Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? Amaral LLFD; Fragoso DC; Rocha AJD Arq Neuropsiquiatr; 2019 Jul; 77(7):485-492. PubMed ID: 31365640 [TBL] [Abstract][Full Text] [Related]
7. Magnetization transfer in the investigation of patients with tuberous sclerosis. Girard N; Zimmerman RA; Schnur RE; Haselgrove J; Christensen K Neuroradiology; 1997 Jul; 39(7):523-8. PubMed ID: 9258933 [TBL] [Abstract][Full Text] [Related]
8. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Braffman BH; Bilaniuk LT; Naidich TP; Altman NR; Post MJ; Quencer RM; Zimmerman RA; Brody BA Radiology; 1992 Apr; 183(1):227-38. PubMed ID: 1549677 [TBL] [Abstract][Full Text] [Related]
9. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain. Melhem ER; Bert RJ; Walker RE AJR Am J Roentgenol; 1998 Sep; 171(3):803-7. PubMed ID: 9725320 [TBL] [Abstract][Full Text] [Related]
11. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Geurts JJ; Pouwels PJ; Uitdehaag BM; Polman CH; Barkhof F; Castelijns JA Radiology; 2005 Jul; 236(1):254-60. PubMed ID: 15987979 [TBL] [Abstract][Full Text] [Related]
12. Tuberous sclerosis: characteristics at CT and MR imaging. Altman NR; Purser RK; Post MJ Radiology; 1988 May; 167(2):527-32. PubMed ID: 3357966 [TBL] [Abstract][Full Text] [Related]
13. MR imaging of tuberous sclerosis in neonates and young infants. Baron Y; Barkovich AJ AJNR Am J Neuroradiol; 1999 May; 20(5):907-16. PubMed ID: 10369365 [TBL] [Abstract][Full Text] [Related]
14. T1- Thresholds in Black Holes Increase Clinical-Radiological Correlation in Multiple Sclerosis Patients. Thaler C; Faizy T; Sedlacik J; Holst B; Stellmann JP; Young KL; Heesen C; Fiehler J; Siemonsen S PLoS One; 2015; 10(12):e0144693. PubMed ID: 26659852 [TBL] [Abstract][Full Text] [Related]
15. Diffusion tensor imaging in children and adolescents with tuberous sclerosis. Karadag D; Mentzel HJ; Güllmar D; Rating T; Löbel U; Brandl U; Reichenbach JR; Kaiser WA Pediatr Radiol; 2005 Oct; 35(10):980-3. PubMed ID: 16170442 [TBL] [Abstract][Full Text] [Related]
16. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI. Alkan O; Kizilkiliç O; Yildirim T; Alibek S Diagn Interv Radiol; 2009 Jun; 15(2):75-80. PubMed ID: 19517375 [TBL] [Abstract][Full Text] [Related]
17. Subependymal Giant Cell Astrocytoma Size Measurement in Tuberous Sclerosis Complex: Noncontrast vs Contrast-Enhanced 3-Dimensional T1-Weighted Magnetic Resonance Imaging (MRI). Hill BJ; Gadde JA; Palasis S J Child Neurol; 2019 Dec; 34(14):922-927. PubMed ID: 31424303 [TBL] [Abstract][Full Text] [Related]
18. MR imaging of intracranial tuberous sclerosis. McMurdo SK; Moore SG; Brant-Zawadzki M; Berg BO; Koch T; Newton TH; Edwards MS AJR Am J Roentgenol; 1987 Apr; 148(4):791-6. PubMed ID: 3493666 [TBL] [Abstract][Full Text] [Related]
19. The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex. Chalifoux JR; Perry N; Katz JS; Wiggins GC; Roth J; Miles D; Devinsky O; Weiner HL; Milla SS J Neurosurg Pediatr; 2013 Mar; 11(3):268-73. PubMed ID: 23289918 [TBL] [Abstract][Full Text] [Related]