BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16283285)

  • 1. Comparative analysis of MR sequences to detect structural brain lesions in tuberous sclerosis.
    Pinto Gama HP; da Rocha AJ; Braga FT; da Silva CJ; Maia AC; de Campos Meirelles RG; Mendonça do Rego JI; Lederman HM
    Pediatr Radiol; 2006 Feb; 36(2):119-25. PubMed ID: 16283285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of magnetization transfer imaging for intracranial lesions of tuberous sclerosis.
    Jeong MG; Chung TS; Coe CJ; Jeon TJ; Kim DI; Joo AY
    J Comput Assist Tomogr; 1997; 21(1):8-14. PubMed ID: 9022761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and conspicuity of intracranial abnormalities on MR imaging in adults with tuberous sclerosis complex: A comparison of sequences including ultrafast T2-weighted images.
    Griffiths PD; Hoggard N
    Epilepsia; 2009 Dec; 50(12):2605-10. PubMed ID: 19490046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Fluid-Attenuated Inversion Recovery pulse sequence in children with tuberous sclerosis.
    Chien JC; Peng SS; Liu HM; Huang KM; Li YW
    Acta Paediatr Taiwan; 1999; 40(6):393-9. PubMed ID: 10927952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved detection of cortical and subcortical tubers in tuberous sclerosis by fluid-attenuated inversion recovery MRI.
    Kato T; Yamanouchi H; Sugai K; Takashima S
    Neuroradiology; 1997 May; 39(5):378-80. PubMed ID: 9189887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement?
    Amaral LLFD; Fragoso DC; Rocha AJD
    Arq Neuropsiquiatr; 2019 Jul; 77(7):485-492. PubMed ID: 31365640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetization transfer in the investigation of patients with tuberous sclerosis.
    Girard N; Zimmerman RA; Schnur RE; Haselgrove J; Christensen K
    Neuroradiology; 1997 Jul; 39(7):523-8. PubMed ID: 9258933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review.
    Braffman BH; Bilaniuk LT; Naidich TP; Altman NR; Post MJ; Quencer RM; Zimmerman RA; Brody BA
    Radiology; 1992 Apr; 183(1):227-38. PubMed ID: 1549677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Usefulness of optimized gadolinium-enhanced fast fluid-attenuated inversion recovery MR imaging in revealing lesions of the brain.
    Melhem ER; Bert RJ; Walker RE
    AJR Am J Roentgenol; 1998 Sep; 171(3):803-7. PubMed ID: 9725320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral tuberous sclerosis: MR imaging.
    Nixon JR; Houser OW; Gomez MR; Okazaki H
    Radiology; 1989 Mar; 170(3 Pt 1):869-73. PubMed ID: 2916045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging.
    Geurts JJ; Pouwels PJ; Uitdehaag BM; Polman CH; Barkhof F; Castelijns JA
    Radiology; 2005 Jul; 236(1):254-60. PubMed ID: 15987979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuberous sclerosis: characteristics at CT and MR imaging.
    Altman NR; Purser RK; Post MJ
    Radiology; 1988 May; 167(2):527-32. PubMed ID: 3357966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR imaging of tuberous sclerosis in neonates and young infants.
    Baron Y; Barkovich AJ
    AJNR Am J Neuroradiol; 1999 May; 20(5):907-16. PubMed ID: 10369365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T1- Thresholds in Black Holes Increase Clinical-Radiological Correlation in Multiple Sclerosis Patients.
    Thaler C; Faizy T; Sedlacik J; Holst B; Stellmann JP; Young KL; Heesen C; Fiehler J; Siemonsen S
    PLoS One; 2015; 10(12):e0144693. PubMed ID: 26659852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion tensor imaging in children and adolescents with tuberous sclerosis.
    Karadag D; Mentzel HJ; Güllmar D; Rating T; Löbel U; Brandl U; Reichenbach JR; Kaiser WA
    Pediatr Radiol; 2005 Oct; 35(10):980-3. PubMed ID: 16170442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI.
    Alkan O; Kizilkiliç O; Yildirim T; Alibek S
    Diagn Interv Radiol; 2009 Jun; 15(2):75-80. PubMed ID: 19517375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subependymal Giant Cell Astrocytoma Size Measurement in Tuberous Sclerosis Complex: Noncontrast vs Contrast-Enhanced 3-Dimensional T1-Weighted Magnetic Resonance Imaging (MRI).
    Hill BJ; Gadde JA; Palasis S
    J Child Neurol; 2019 Dec; 34(14):922-927. PubMed ID: 31424303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MR imaging of intracranial tuberous sclerosis.
    McMurdo SK; Moore SG; Brant-Zawadzki M; Berg BO; Koch T; Newton TH; Edwards MS
    AJR Am J Roentgenol; 1987 Apr; 148(4):791-6. PubMed ID: 3493666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ability of high field strength 7-T magnetic resonance imaging to reveal previously uncharacterized brain lesions in patients with tuberous sclerosis complex.
    Chalifoux JR; Perry N; Katz JS; Wiggins GC; Roth J; Miles D; Devinsky O; Weiner HL; Milla SS
    J Neurosurg Pediatr; 2013 Mar; 11(3):268-73. PubMed ID: 23289918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion weighted MR findings of brain involvement in tuberous sclerosis.
    Firat AK; Karakaş HM; Erdem G; Yakinci C; Biçak U
    Diagn Interv Radiol; 2006 Jun; 12(2):57-60. PubMed ID: 16752348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.