These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 16283393)
1. Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking CuZnSOD. Sanchez RJ; Srinivasan C; Munroe WH; Wallace MA; Martins J; Kao TY; Le K; Gralla EB; Valentine JS J Biol Inorg Chem; 2005 Dec; 10(8):913-23. PubMed ID: 16283393 [TBL] [Abstract][Full Text] [Related]
2. Induction of phenotypes resembling CuZn-superoxide dismutase deletion in wild-type yeast cells: an in vivo assay for the role of superoxide in the toxicity of redox-cycling compounds. Wallace MA; Bailey S; Fukuto JM; Valentine JS; Gralla EB Chem Res Toxicol; 2005 Aug; 18(8):1279-86. PubMed ID: 16097801 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a novel role of copper-zinc superoxide dismutase in zinc metabolism. Wei JP; Srinivasan C; Han H; Valentine JS; Gralla EB J Biol Chem; 2001 Nov; 276(48):44798-803. PubMed ID: 11581253 [TBL] [Abstract][Full Text] [Related]
4. Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. Corson LB; Folmer J; Strain JJ; Culotta VC; Cleveland DW J Biol Chem; 1999 Sep; 274(39):27590-6. PubMed ID: 10488097 [TBL] [Abstract][Full Text] [Related]
6. Only one of a wide assortment of manganese-containing SOD mimicking compounds rescues the slow aerobic growth phenotypes of both Escherichia coli and Saccharomyces cerevisiae strains lacking superoxide dismutase enzymes. Munroe W; Kingsley C; Durazo A; Gralla EB; Imlay JA; Srinivasan C; Valentine JS J Inorg Biochem; 2007 Nov; 101(11-12):1875-82. PubMed ID: 17723242 [TBL] [Abstract][Full Text] [Related]
7. Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae. The role of respiratory chain activity. Westerbeek-Marres CA; Moore MM; Autor AP Eur J Biochem; 1988 Jul; 174(4):611-20. PubMed ID: 2839336 [TBL] [Abstract][Full Text] [Related]
8. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255 [TBL] [Abstract][Full Text] [Related]
10. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Tamai KT; Gralla EB; Ellerby LM; Valentine JS; Thiele DJ Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8013-7. PubMed ID: 8367458 [TBL] [Abstract][Full Text] [Related]
11. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. Longo VD; Gralla EB; Valentine JS J Biol Chem; 1996 May; 271(21):12275-80. PubMed ID: 8647826 [TBL] [Abstract][Full Text] [Related]
13. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Lin SJ; Culotta VC Mol Cell Biol; 1996 Nov; 16(11):6303-12. PubMed ID: 8887660 [TBL] [Abstract][Full Text] [Related]
14. Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. Luk EE; Culotta VC J Biol Chem; 2001 Dec; 276(50):47556-62. PubMed ID: 11602606 [TBL] [Abstract][Full Text] [Related]
15. A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. van Loon AP; Pesold-Hurt B; Schatz G Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3820-4. PubMed ID: 3520557 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae. Saffi J; Sonego L; Varela QD; Salvador M Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741 [TBL] [Abstract][Full Text] [Related]
18. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Carter CD; Kitchen LE; Au WC; Babic CM; Basrai MA Mol Cell Biol; 2005 Dec; 25(23):10273-85. PubMed ID: 16287844 [TBL] [Abstract][Full Text] [Related]
19. Manganese toxicity and Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved domain protein) family. Yang M; Jensen LT; Gardner AJ; Culotta VC Biochem J; 2005 Mar; 386(Pt 3):479-87. PubMed ID: 15498024 [TBL] [Abstract][Full Text] [Related]
20. Insights into the iron-ome and manganese-ome of Δmtm1 Saccharomyces cerevisiae mitochondria. Park J; McCormick SP; Chakrabarti M; Lindahl PA Metallomics; 2013 Jun; 5(6):656-72. PubMed ID: 23598994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]