These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16283393)

  • 21. Metallation state of human manganese superoxide dismutase expressed in Saccharomyces cerevisiae.
    Whittaker MM; Whittaker JW
    Arch Biochem Biophys; 2012 Jul; 523(2):191-7. PubMed ID: 22561997
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor.
    Martin ME; Byers BR; Olson MO; Salin ML; Arceneaux JE; Tolbert C
    J Biol Chem; 1986 Jul; 261(20):9361-7. PubMed ID: 3722201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Yeast lacking superoxide dismutase(s) show elevated levels of "free iron" as measured by whole cell electron paramagnetic resonance.
    Srinivasan C; Liba A; Imlay JA; Valentine JS; Gralla EB
    J Biol Chem; 2000 Sep; 275(38):29187-92. PubMed ID: 10882731
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection.
    Slekar KH; Kosman DJ; Culotta VC
    J Biol Chem; 1996 Nov; 271(46):28831-6. PubMed ID: 8910528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of "free" or electron paramagnetic resonance-detectable iron in whole yeast cells as indicator of superoxide stress.
    Srinivasan C; Gralla EB
    Methods Enzymol; 2002; 349():173-80. PubMed ID: 11912907
    [No Abstract]   [Full Text] [Related]  

  • 26. Cu,Zn-superoxide dismutase is necessary for proper function of VDAC in Saccharomyces cerevisiae cells.
    Karachitos A; Galganska H; Wojtkowska M; Budzinska M; Stobienia O; Bartosz G; Kmita H
    FEBS Lett; 2009 Jan; 583(2):449-55. PubMed ID: 19116152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study.
    Pagani MA; Casamayor A; Serrano R; Atrian S; Ariño J
    Mol Microbiol; 2007 Jul; 65(2):521-37. PubMed ID: 17630978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast.
    Longo VD; Ellerby LM; Bredesen DE; Valentine JS; Gralla EB
    J Cell Biol; 1997 Jun; 137(7):1581-8. PubMed ID: 9199172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell cycle- and age-dependent activation of Sod1p drives the formation of stress resistant cell subpopulations within clonal yeast cultures.
    Sumner ER; Avery AM; Houghton JE; Robins RA; Avery SV
    Mol Microbiol; 2003 Nov; 50(3):857-70. PubMed ID: 14617147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of superoxide dismutase deficiency on zinc toxicity in Schizosaccharomyces pombe.
    Tarhan C; Pekmez M; Karaer S; Arda N; Sarikaya AT
    J Basic Microbiol; 2007 Dec; 47(6):506-12. PubMed ID: 18072251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The synthetic genetic interaction network reveals small molecules that target specific pathways in Sacchromyces cerevisiae.
    Tamble CM; St Onge RP; Giaever G; Nislow C; Williams AG; Stuart JM; Lokey RS
    Mol Biosyst; 2011 Jun; 7(6):2019-30. PubMed ID: 21487606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Copper/zinc-Superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae.
    Avery SV; Malkapuram S; Mateus C; Babb KS
    J Bacteriol; 2000 Jan; 182(1):76-80. PubMed ID: 10613865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of iron ions on the antioxidant enzyme activities in yeast Saccharomyces cerevisiae].
    Hospodar'ov DV; Lushchak VI
    Ukr Biokhim Zh (1999); 2004; 76(6):100-5. PubMed ID: 16350751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene.
    Melo SC; Santos RX; Melgaço AC; Pereira AC; Pungartnik C; Brendel M
    Int J Mol Sci; 2015 Jun; 16(6):12324-44. PubMed ID: 26039235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Yeast frataxin mutants display decreased superoxide dismutase activity crucial to promote protein oxidative damage.
    Irazusta V; Obis E; Moreno-Cermeño A; Cabiscol E; Ros J; Tamarit J
    Free Radic Biol Med; 2010 Feb; 48(3):411-20. PubMed ID: 19932164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of manganese-containing superoxide dismutase in Escherichia coli. Anaerobic induction by nitrate.
    Hassan HM; Moody CS
    J Biol Chem; 1987 Dec; 262(35):17173-7. PubMed ID: 3316230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide dismutases-a review of the metal-associated mechanistic variations.
    Abreu IA; Cabelli DE
    Biochim Biophys Acta; 2010 Feb; 1804(2):263-74. PubMed ID: 19914406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ascorbate restores lifespan of superoxide-dismutase deficient yeast.
    Krzepiłko A; Swieciło A; Wawryn J; Zadrag R; Kozioł S; Bartosz G; Biliński T
    Free Radic Res; 2004 Sep; 38(9):1019-24. PubMed ID: 15621721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative stability studies on the iron and manganese forms of the cambialistic superoxide dismutase from Propionibacterium shermanii.
    Meier B; Parak F; Desideri A; Rotilio G
    FEBS Lett; 1997 Sep; 414(1):122-4. PubMed ID: 9305744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae.
    Li AM; Martins J; Tovmasyan A; Valentine JS; Batinic-Haberle I; Spasojevic I; Gralla EB
    Redox Biol; 2014; 3():1-6. PubMed ID: 25462059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.