These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 16283454)
1. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mukherjee PK; Raghu K Mycopathologia; 1997; 139(3):151-5. PubMed ID: 16283454 [TBL] [Abstract][Full Text] [Related]
2. Induction of stable benomyl-tolerant phenotypic mutants of Trichoderma pseudokoningii MTCC 3011, and their evaluation for antagonistic and biocontrol potential. Mukherjee PK; Sherkhane PD; Murthy NB Indian J Exp Biol; 1999 Jul; 37(7):710-2. PubMed ID: 10522159 [TBL] [Abstract][Full Text] [Related]
3. [In vitro tests of the antagonistic behavior of Trichoderma spp. against pathogenic species of the horticultural region of La Plata, Argentina]. Mónaco C; Perelló A; Rollán MC Microbiologia; 1994 Dec; 10(4):423-8. PubMed ID: 7772296 [TBL] [Abstract][Full Text] [Related]
4. Endophytic Fungi as Potential Biocontrol Agents against Safari Motlagh MR; Farokhzad M; Kaviani B; Kulus D Cells; 2022 Aug; 11(17):. PubMed ID: 36078051 [TBL] [Abstract][Full Text] [Related]
5. Histopathological studies of sclerotia of phytopathogenic fungi parasitized by a GFP transformed Trichoderma virens antagonistic strain. Sarrocco S; Mikkelsen L; Vergara M; Jensen DF; Lübeck M; Vannacci G Mycol Res; 2006 Feb; 110(Pt 2):179-87. PubMed ID: 16388938 [TBL] [Abstract][Full Text] [Related]
6. Inhibition coefficient and molecular diversity of multi stress tolerant Trichoderma as potential biocontrol agent against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Hirapara JG; Golakiya BA Infect Genet Evol; 2017 Nov; 55():75-92. PubMed ID: 28864153 [TBL] [Abstract][Full Text] [Related]
7. Gliotoxin Is an Important Secondary Metabolite Involved in Suppression of Hua L; Zeng H; He L; Jiang Q; Ye P; Liu Y; Sun X; Zhang M Phytopathology; 2021 Oct; 111(10):1720-1725. PubMed ID: 33620234 [No Abstract] [Full Text] [Related]
8. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc. Hirpara DG; Gajera HP; Bhimani RD; Golakiya BA Curr Genet; 2016 Aug; 62(3):619-41. PubMed ID: 26803831 [TBL] [Abstract][Full Text] [Related]
9. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Shaigan S; Seraji A; Moghaddam SA Pak J Biol Sci; 2008 Oct; 11(19):2346-50. PubMed ID: 19137869 [TBL] [Abstract][Full Text] [Related]
10. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential. Longa CM; Pertot I; Tosi S J Basic Microbiol; 2008 Aug; 48(4):269-77. PubMed ID: 18720503 [TBL] [Abstract][Full Text] [Related]
11. Identification of Differentially Expressed Genes in Trichoderma koningii IABT1252 During Its Interaction with Sclerotium rolfsii. Rabinal C; Bhat S Curr Microbiol; 2020 Mar; 77(3):396-404. PubMed ID: 31844935 [TBL] [Abstract][Full Text] [Related]
12. Viridepyronone, a new antifungal 6-substituted 2H-pyran-2-one produced by Trichoderma viride. Evidente A; Cabras A; Maddau L; Serra S; Andolfi A; Motta A J Agric Food Chem; 2003 Nov; 51(24):6957-60. PubMed ID: 14611154 [TBL] [Abstract][Full Text] [Related]
13. Potential of Microbispora sp. V2 as biocontrol agent against Sclerotium rolfsii, the causative agent of southern blight of Zea mays L (Baby corn)--in vitro studies. Patil NN; Waghmode MS; Gaikwad PS; Gajbhiye MH; Gunjal AB; Nawani NN; Kapadnis BP Indian J Exp Biol; 2014 Nov; 52(11):1147-51. PubMed ID: 25434111 [TBL] [Abstract][Full Text] [Related]
14. Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. Chen L; Wu YD; Chong XY; Xin QH; Wang DX; Bian K J Appl Microbiol; 2020 Mar; 128(3):803-813. PubMed ID: 31705716 [TBL] [Abstract][Full Text] [Related]
15. Viridenepoxydiol, a new pentasubstituted oxiranyldecene produced by Trichoderma viride. Evidente A; Cabras A; Maddau L; Marras F; Andolfi A; Melck D; Motta A J Agric Food Chem; 2006 Sep; 54(18):6588-92. PubMed ID: 16939313 [TBL] [Abstract][Full Text] [Related]
16. Diversity of Coulibaly AE; Pakora GA; Ako ABA; Amari GELD; N'Guessan CA; Kouabenan A; Kone D; Djaman JA Heliyon; 2022 Feb; 8(2):e08943. PubMed ID: 35243065 [No Abstract] [Full Text] [Related]
17. Response surface methodology study of the combined effects of temperature, pH, and aw on the growth rate of Trichoderma asperellum. Begoude BA; Lahlali R; Friel D; Tondje PR; Jijakli MH J Appl Microbiol; 2007 Oct; 103(4):845-54. PubMed ID: 17897186 [TBL] [Abstract][Full Text] [Related]
18. Deciphering the defense response in tomato against Shanmugaraj C; Kamil D; Parimalan R; Singh PK; Shashank PR; Iquebal MA; Hussain Z; Das A; Gogoi R; Nishmitha K 3 Biotech; 2024 Sep; 14(9):210. PubMed ID: 39188534 [TBL] [Abstract][Full Text] [Related]
19. Screening of the Biocontrol Efficacy of Potent Kumari R; Kumar V; Arukha AP; Rabbee MF; Ameen F; Koul B Microorganisms; 2024 Jun; 12(7):. PubMed ID: 39065049 [TBL] [Abstract][Full Text] [Related]
20. Molecular insights into development of Trichoderma interfusants for multistress tolerance enhancing antagonism against Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Patel AK; Katakpara ZA; Golakiya BA J Cell Physiol; 2019 May; 234(5):7368-7383. PubMed ID: 30370526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]