These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 16283454)
21. Production of amylolytic enzymes in culture by Botryodiplodia theobromae and Sclerotium rolfsii associated with the corm rots of Colocasia esculenta. Nwufo MI; Fajola AO Acta Microbiol Hung; 1988; 35(4):371-7. PubMed ID: 2469279 [TBL] [Abstract][Full Text] [Related]
22. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola. Zhou T; Schneider KE; Li XZ Int J Food Microbiol; 2008 Aug; 126(1-2):180-5. PubMed ID: 18573559 [TBL] [Abstract][Full Text] [Related]
23. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris. Abdelhafez AA; Eid KE; El-Abeid SE; Abbas MHH; Ahmed N; Mansour RRME; Zou G; Iqbal J; Fahad S; Elkelish A; Alamri S; Siddiqui MH; Mohamed I Chemosphere; 2021 May; 271():129321. PubMed ID: 33434829 [TBL] [Abstract][Full Text] [Related]
24. PCR-DGGE Analysis Proves the Suppression of Elsharkawy MM; Kuno S; Hyakumachi M; Mostafa YS; Alamri SA; Alrumman SA J Fungi (Basel); 2022 Jan; 8(2):. PubMed ID: 35205888 [TBL] [Abstract][Full Text] [Related]
25. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit. Qin GZ; Tian SP; Xu Y; Chan ZL; Li BQ J Appl Microbiol; 2006 Mar; 100(3):508-15. PubMed ID: 16478490 [TBL] [Abstract][Full Text] [Related]
26. Determination of radial growth rate of colonies of Sclerotium rolfsii F-6656 for the evaluation of culture medium, optimum incubation temperature, osmo- and halotolerance. Fariña JI; Siñeriz F; Molina OE; Perotti NI Rev Argent Microbiol; 1996; 28(4):190-6. PubMed ID: 9017854 [TBL] [Abstract][Full Text] [Related]
27. Cloning and heterologous expression of aspartic protease SA76 related to biocontrol in Trichoderma harzianum. Liu Y; Yang Q FEMS Microbiol Lett; 2007 Dec; 277(2):173-81. PubMed ID: 18031337 [TBL] [Abstract][Full Text] [Related]
28. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Djonović S; Pozo MJ; Dangott LJ; Howell CR; Kenerley CM Mol Plant Microbe Interact; 2006 Aug; 19(8):838-53. PubMed ID: 16903350 [TBL] [Abstract][Full Text] [Related]
29. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Loc NH; Huy ND; Quang HT; Lan TT; Thu Ha TT Mycology; 2020; 11(1):38-48. PubMed ID: 32128280 [No Abstract] [Full Text] [Related]
30. Exploring conserved and novel MicroRNA-like small RNAs from stress tolerant Trichoderma fusants and parental strains during interaction with fungal phytopathogen Sclerotium rolfsii Sacc. Hirpara DG; Gajera HP; Savaliya DD; Parakhia MV Pestic Biochem Physiol; 2023 Apr; 191():105368. PubMed ID: 36963937 [TBL] [Abstract][Full Text] [Related]
31. [Antagonism in vitro among phytopathogenic and saprobic fungi from horticultural soils]. Alippi HE; Monaco C Rev Argent Microbiol; 1990; 22(2):90-3. PubMed ID: 2287718 [TBL] [Abstract][Full Text] [Related]
33. Efficient production of laccases by Trametes sp. AH28-2 in cocultivation with a Trichoderma strain. Zhang H; Hong YZ; Xiao YZ; Yuan J; Tu XM; Zhang XQ Appl Microbiol Biotechnol; 2006 Nov; 73(1):89-94. PubMed ID: 16622678 [TBL] [Abstract][Full Text] [Related]
34. Antagonistic and plant growth activity of Trichoderma isolates of Western Himalayas. Joshi BB; Bhatt RP; Bahukhandi D J Environ Biol; 2010 Nov; 31(6):921-8. PubMed ID: 21506476 [TBL] [Abstract][Full Text] [Related]
35. The antagonistic potential of peanut endophytic bacteria against Sclerotium rolfsii causing stem rot. Li L; Wang J; Liu D; Li L; Zhen J; Lei G; Wang B; Yang W Braz J Microbiol; 2023 Mar; 54(1):361-370. PubMed ID: 36574205 [TBL] [Abstract][Full Text] [Related]
36. The Biogenically Efficient Synthesis of Silver Nanoparticles Using the Fungus El-Ashmony RMS; Zaghloul NSS; Milošević M; Mohany M; Al-Rejaie SS; Abdallah Y; Galal AA J Fungi (Basel); 2022 Jun; 8(6):. PubMed ID: 35736080 [TBL] [Abstract][Full Text] [Related]
37. Comparative Phenotypic, Genomic, and Transcriptomic Analyses of Two Contrasting Strains of the Plant Beneficial Fungus Pachauri S; Zaid R; Sherkhane PD; Easa J; Viterbo A; Chet I; Horwitz BA; Mukherjee PK Microbiol Spectr; 2023 Jan; 11(2):e0302422. PubMed ID: 36719232 [TBL] [Abstract][Full Text] [Related]
38. Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. Poosapati S; Ravulapalli PD; Tippirishetty N; Vishwanathaswamy DK; Chunduri S Springerplus; 2014; 3():641. PubMed ID: 25392809 [TBL] [Abstract][Full Text] [Related]
39. The improvement of competitive saprophytic capabilities of Trichoderma species through the use of chemical mutagens. Rashmi S; Maurya S; Upadhyay RS Braz J Microbiol; 2016; 47(1):10-7. PubMed ID: 26887221 [TBL] [Abstract][Full Text] [Related]
40. Application of Bio-Friendly Formulations of Chitinase-Producing Abo-Zaid G; Abdelkhalek A; Matar S; Darwish M; Abdel-Gayed M J Fungi (Basel); 2021 Feb; 7(3):. PubMed ID: 33669115 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]