These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16283545)

  • 21. Interactions of casein micelles with calcium phosphate particles.
    Tercinier L; Ye A; Anema SG; Singh A; Singh H
    J Agric Food Chem; 2014 Jun; 62(25):5983-92. PubMed ID: 24896851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavior of calcium and phosphate in artificial casein micelles.
    Zhang ZP; Fujii M; Aoki T
    J Dairy Sci; 1996 Oct; 79(10):1722-27. PubMed ID: 8923242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On heating milk, the dissociation of kappa-casein from the casein micelles can precede interactions with the denatured whey proteins.
    Anema SG
    J Dairy Res; 2008 Nov; 75(4):415-21. PubMed ID: 18701003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of molecular weight of a purified fraction of colloidal calcium phosphate derived from the casein micelles of bovine milk.
    Choi J; Horne DS; Lucey JA
    J Dairy Sci; 2011 Jul; 94(7):3250-61. PubMed ID: 21700009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural differences between bovine A(1) and A(2) β-casein alter micelle self-assembly and influence molecular chaperone activity.
    Raynes JK; Day L; Augustin MA; Carver JA
    J Dairy Sci; 2015 Apr; 98(4):2172-82. PubMed ID: 25648798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties of an αs-casein-rich casein fraction: influence of dialysis on surface properties, miscibility, and micelle formation.
    Kessler A; Menéndez-Aguirre O; Hinrichs J; Stubenrauch C; Weiss J
    J Dairy Sci; 2013 Sep; 96(9):5575-90. PubMed ID: 23871380
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations of the physical characteristics of milk from transgenic mice producing bovine kappa-casein.
    Gutiérrez-Adán A; Maga EA; Meade H; Shoemaker CF; Medrano JF; Anderson GB; Murray JD
    J Dairy Sci; 1996 May; 79(5):791-9. PubMed ID: 8792278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental evidence for previously unclassified calcium phosphate structures in the casein micelle.
    Hindmarsh JP; Watkinson P
    J Dairy Sci; 2017 Sep; 100(9):6938-6948. PubMed ID: 28690066
    [No Abstract]   [Full Text] [Related]  

  • 29. A model for the formation and structure of casein micelles from subunits of variable composition.
    Slattery CW; Evard R
    Biochim Biophys Acta; 1973 Aug; 317(2):529-38. PubMed ID: 19999736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pH on dissociation of casein micelles in yak skim milk.
    Yang M; Zhang GD; Yang JT; Sun D; Wen PC; Zhang WB
    J Dairy Sci; 2018 Apr; 101(4):2998-3007. PubMed ID: 29395138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation and characterization of milk calcium salts by using casein phosphopeptide.
    Nakano T; Sugimoto Y; Ibrahim HR; Toba Y; Aoe S; Aoki T
    Prep Biochem Biotechnol; 2000 May; 30(2):155-66. PubMed ID: 10794185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short communication: Serum composition of milk subjected to re-equilibration by dialysis at different temperatures, after pH adjustments.
    Zhao Z; Corredig M
    J Dairy Sci; 2016 Apr; 99(4):2588-2593. PubMed ID: 26830739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rennet-induced gelation of calcium and phosphate supplemented skim milk subjected to CO2 treatment.
    Guillaume C; Gastaldi E; Cuq JL; Marchesseau S
    J Dairy Sci; 2004 Oct; 87(10):3209-16. PubMed ID: 15377599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three kinetically different inorganic phosphate entities in bovine casein micelles revealed by isotopic exchange method and compartmental analysis.
    Kolar ZI; Verburg TG; van Dijk HJ
    J Inorg Biochem; 2002 May; 90(1-2):61-6. PubMed ID: 12009256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Disruption and reassociation of casein micelles under high pressure: influence of milk serum composition and casein micelle concentration.
    Huppertz T; de Kruif CG
    J Agric Food Chem; 2006 Aug; 54(16):5903-9. PubMed ID: 16881693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular structure of the casein micelle.
    McMahon DJ; Oommen BS
    J Dairy Sci; 2008 May; 91(5):1709-21. PubMed ID: 18420601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physicochemical properties of skim milk powder dispersions prepared with calcium-chelating sodium tripolyphosphate, trisodium citrate, and sodium hexametaphosphate.
    Choi I; Zhong Q
    J Dairy Sci; 2020 Nov; 103(11):9868-9880. PubMed ID: 32861487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.
    Liu DZ; Weeks MG; Dunstan DE; Martin GJ
    Food Chem; 2013 Dec; 141(4):4081-6. PubMed ID: 23993588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of pH on the association of denatured whey proteins with casein micelles in heated reconstituted skim milk.
    Anema SG; Li Y
    J Agric Food Chem; 2003 Mar; 51(6):1640-6. PubMed ID: 12617598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction properties of singly phosphorylated human beta-casein: similarities with other phosphorylation levels.
    Sood SM; Slattery CW
    J Dairy Sci; 1994 Feb; 77(2):405-12. PubMed ID: 8182164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.