These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 16283686)
1. Design and synthesis of oligosaccharides that interfere with glycoprotein quality-control systems. Arai MA; Matsuo I; Hagihara S; Totani K; Maruyama J; Kitamoto K; Ito Y Chembiochem; 2005 Dec; 6(12):2281-9. PubMed ID: 16283686 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control. Paquet ME; Leach MR; Williams DB Methods; 2005 Apr; 35(4):338-47. PubMed ID: 15804605 [TBL] [Abstract][Full Text] [Related]
3. Oligosaccharide binding characteristics of the molecular chaperones calnexin and calreticulin. Vassilakos A; Michalak M; Lehrman MA; Williams DB Biochemistry; 1998 Mar; 37(10):3480-90. PubMed ID: 9521669 [TBL] [Abstract][Full Text] [Related]
4. The recognition motif of the glycoprotein-folding sensor enzyme UDP-Glc:glycoprotein glucosyltransferase. Totani K; Ihara Y; Tsujimoto T; Matsuo I; Ito Y Biochemistry; 2009 Apr; 48(13):2933-40. PubMed ID: 19222173 [TBL] [Abstract][Full Text] [Related]
5. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. Williams DB J Cell Sci; 2006 Feb; 119(Pt 4):615-23. PubMed ID: 16467570 [TBL] [Abstract][Full Text] [Related]
6. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Parodi AJ Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707 [TBL] [Abstract][Full Text] [Related]
7. Calnexin, calreticulin, and ERp57: teammates in glycoprotein folding. Ellgaard L; Frickel EM Cell Biochem Biophys; 2003; 39(3):223-47. PubMed ID: 14716078 [TBL] [Abstract][Full Text] [Related]
8. Exploration of oligosaccharide-protein interactions in glycoprotein quality control by synthetic approaches. Hagihara S; Totani K; Ito Y Chem Rec; 2006; 6(6):290-302. PubMed ID: 17304538 [TBL] [Abstract][Full Text] [Related]
9. More than one glycan is needed for ER glucosidase II to allow entry of glycoproteins into the calnexin/calreticulin cycle. Deprez P; Gautschi M; Helenius A Mol Cell; 2005 Jul; 19(2):183-95. PubMed ID: 16039588 [TBL] [Abstract][Full Text] [Related]
10. Endoplasmic reticulum glucosidase II is inhibited by its end products. Bosis E; Nachliel E; Cohen T; Takeda Y; Ito Y; Bar-Nun S; Gutman M Biochemistry; 2008 Oct; 47(41):10970-80. PubMed ID: 18803404 [TBL] [Abstract][Full Text] [Related]
11. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. Saito Y; Ihara Y; Leach MR; Cohen-Doyle MF; Williams DB EMBO J; 1999 Dec; 18(23):6718-29. PubMed ID: 10581245 [TBL] [Abstract][Full Text] [Related]
12. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Michalak M; Groenendyk J; Szabo E; Gold LI; Opas M Biochem J; 2009 Feb; 417(3):651-66. PubMed ID: 19133842 [TBL] [Abstract][Full Text] [Related]
13. Potent lectin-independent chaperone function of calnexin under conditions prevalent within the lumen of the endoplasmic reticulum. Brockmeier A; Williams DB Biochemistry; 2006 Oct; 45(42):12906-16. PubMed ID: 17042509 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of interactions of sendai virus envelope glycoproteins, F and HN, with endoplasmic reticulum-resident molecular chaperones, BiP, calnexin, and calreticulin. Tomita Y; Yamashita T; Sato H; Taira H J Biochem; 1999 Dec; 126(6):1090-100. PubMed ID: 10578061 [TBL] [Abstract][Full Text] [Related]
15. Delineation of the lectin site of the molecular chaperone calreticulin. Thomson SP; Williams DB Cell Stress Chaperones; 2005; 10(3):242-51. PubMed ID: 16184769 [TBL] [Abstract][Full Text] [Related]
17. Cellular functions of endoplasmic reticulum chaperones calreticulin, calnexin, and ERp57. Bedard K; Szabo E; Michalak M; Opas M Int Rev Cytol; 2005; 245():91-121. PubMed ID: 16125546 [TBL] [Abstract][Full Text] [Related]
18. Sugar-binding activity of the MRH domain in the ER alpha-glucosidase II beta subunit is important for efficient glucose trimming. Hu D; Kamiya Y; Totani K; Kamiya D; Kawasaki N; Yamaguchi D; Matsuo I; Matsumoto N; Ito Y; Kato K; Yamamoto K Glycobiology; 2009 Oct; 19(10):1127-35. PubMed ID: 19625484 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Kapoor M; Ellgaard L; Gopalakrishnapai J; Schirra C; Gemma E; Oscarson S; Helenius A; Surolia A Biochemistry; 2004 Jan; 43(1):97-106. PubMed ID: 14705935 [TBL] [Abstract][Full Text] [Related]
20. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Lee W; Kim KR; Singaravelu G; Park BJ; Kim DH; Ahnn J; Yoo YJ Proteomics; 2006 Feb; 6(4):1329-39. PubMed ID: 16404716 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]