BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16284107)

  • 1. Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells.
    Park WS; Han J; Kim N; Ko JH; Kim SJ; Earm YE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2461-7. PubMed ID: 16284107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelin-1 inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C.
    Park WS; Han J; Kim N; Youm JB; Joo H; Kim HK; Ko JH; Earm YE
    J Cardiovasc Pharmacol; 2005 Nov; 46(5):681-9. PubMed ID: 16220076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protein kinase A inhibitor, H-89, directly inhibits KATP and Kir channels in rabbit coronary arterial smooth muscle cells.
    Sun Park W; Kyoung Son Y; Kim N; Boum Youm J; Joo H; Warda M; Ko JH; Earm YE; Han J
    Biochem Biophys Res Commun; 2006 Feb; 340(4):1104-10. PubMed ID: 16403438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein kinase A-dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells.
    Son YK; Park WS; Ko JH; Han J; Kim N; Earm YE
    Biochem Biophys Res Commun; 2005 Dec; 337(4):1145-52. PubMed ID: 16226714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+-K+-ATPase.
    Qamirani E; Razavi HM; Wu X; Davis MJ; Kuo L; Hein TW
    Am J Physiol Heart Circ Physiol; 2006 Apr; 290(4):H1617-23. PubMed ID: 16327018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute hypoxia induces vasodilation and increases coronary blood flow by activating inward rectifier K(+) channels.
    Park WS; Son YK; Kim N; Ko JH; Kang SH; Warda M; Earm YE; Jung ID; Park YM; Han J
    Pflugers Arch; 2007 Sep; 454(6):1023-30. PubMed ID: 17486361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: block by Mg2+, Ca2+, and Ba2+.
    Robertson BE; Bonev AD; Nelson MT
    Am J Physiol; 1996 Aug; 271(2 Pt 2):H696-705. PubMed ID: 8770113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The properties of the inward rectifier potassium currents in rabbit coronary arterial smooth muscle cells.
    Xu X; Rials SJ; Wu Y; Marinchak RA; Kowey PR
    Pflugers Arch; 1999 Jul; 438(2):187-94. PubMed ID: 10370105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luteolin-induced coronary arterial relaxation involves activation of the myocyte voltage-gated K
    Li W; Dong M; Guo P; Liu Y; Jing Y; Chen R; Zhang M
    Life Sci; 2019 Mar; 221():233-240. PubMed ID: 30771310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.
    Sonkusare SK; Dalsgaard T; Bonev AD; Nelson MT
    J Physiol; 2016 Jun; 594(12):3271-85. PubMed ID: 26840527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Calpha.
    Park WS; Kim N; Youm JB; Warda M; Ko JH; Kim SJ; Earm YE; Han J
    Biochem Biophys Res Commun; 2006 Mar; 341(3):728-35. PubMed ID: 16442501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle.
    Wellman GC; Quayle JM; Standen NB
    J Physiol; 1998 Feb; 507 ( Pt 1)(Pt 1):117-29. PubMed ID: 9490826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells.
    Bradley KK; Jaggar JH; Bonev AD; Heppner TJ; Flynn ER; Nelson MT; Horowitz B
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):639-51. PubMed ID: 10066894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological role of inward rectifier K(+) channels in vascular smooth muscle cells.
    Park WS; Han J; Earm YE
    Pflugers Arch; 2008 Oct; 457(1):137-47. PubMed ID: 18437413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional characterization of inwardly rectifying K
    Huang X; Lee SH; Lu H; Sanders KM; Koh SD
    J Physiol; 2018 Feb; 596(3):379-391. PubMed ID: 29205356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle.
    Quayle JM; Dart C; Standen NB
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):715-26. PubMed ID: 8865069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased amplitude of inward rectifier K
    Hayoz S; Pettis J; Bradley V; Segal SS; Jackson WF
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1203-H1214. PubMed ID: 28432059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model.
    Park WS; Ko JH; Kim N; Son YK; Kang SH; Warda M; Jung ID; Park YM; Han J
    Arterioscler Thromb Vasc Biol; 2007 Aug; 27(8):1768-75. PubMed ID: 17525364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K+-induced dilation of hamster cremasteric arterioles involves both the Na+/K+-ATPase and inward-rectifier K+ channels.
    Burns WR; Cohen KD; Jackson WF
    Microcirculation; 2004; 11(3):279-93. PubMed ID: 15280082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of Inward Rectifier K
    Tang C; Wang D; Luo E; Yan G; Liu B; Hou J; Qiao Y
    Biomed Res Int; 2020; 2020():4370832. PubMed ID: 32461988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.