BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 16284265)

  • 1. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
    Corry B
    Biophys J; 2006 Feb; 90(3):799-810. PubMed ID: 16284265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies of the M2 transmembrane segment of the glycine receptor: models of the open pore structure and current-voltage characteristics.
    Cheng MH; Cascio M; Coalson RD
    Biophys J; 2005 Sep; 89(3):1669-80. PubMed ID: 15951389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical conformation of the closed and open states of the acetylcholine receptor channel.
    Corry B
    Biochim Biophys Acta; 2004 May; 1663(1-2):2-5. PubMed ID: 15157602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor.
    Beckstein O; Sansom MS
    Phys Biol; 2006 Jul; 3(2):147-59. PubMed ID: 16829701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology model of the GABAA receptor examined using Brownian dynamics.
    O'Mara M; Cromer B; Parker M; Chung SH
    Biophys J; 2005 May; 88(5):3286-99. PubMed ID: 15749776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.
    Sansom MS; Adcock C; Smith GR
    J Struct Biol; 1998; 121(2):246-62. PubMed ID: 9615441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fast gating mechanism in ClC-0 channels.
    Bisset D; Corry B; Chung SH
    Biophys J; 2005 Jul; 89(1):179-86. PubMed ID: 15863476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS.
    Anishkin A; Sukharev S
    Biophys J; 2004 May; 86(5):2883-95. PubMed ID: 15111405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of the ligand-binding domain of inward rectifier K channels as revealed by molecular dynamics simulations: toward an understanding of Kir channel gating.
    Haider S; Grottesi A; Hall BA; Ashcroft FM; Sansom MS
    Biophys J; 2005 May; 88(5):3310-20. PubMed ID: 15749783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore waters regulate ion permeation in a calcium release-activated calcium channel.
    Dong H; Fiorin G; Carnevale V; Treptow W; Klein ML
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17332-7. PubMed ID: 24101457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor.
    Smith GR; Sansom MS
    Biophys J; 1997 Sep; 73(3):1364-81. PubMed ID: 9284304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free-energy landscapes of ion-channel gating are malleable: changes in the number of bound ligands are accompanied by changes in the location of the transition state in acetylcholine-receptor channels.
    Grosman C
    Biochemistry; 2003 Dec; 42(50):14977-87. PubMed ID: 14674774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study.
    Xu Y; Barrantes FJ; Luo X; Chen K; Shen J; Jiang H
    J Am Chem Soc; 2005 Feb; 127(4):1291-9. PubMed ID: 15669869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-induced conformational change in the alpha7 nicotinic receptor ligand binding domain.
    Henchman RH; Wang HL; Sine SM; Taylor P; McCammon JA
    Biophys J; 2005 Apr; 88(4):2564-76. PubMed ID: 15665135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinked-helices model of the nicotinic acetylcholine receptor ion channel and its complexes with blockers: simulation by the Monte Carlo minimization method.
    Tikhonov DB; Zhorov BS
    Biophys J; 1998 Jan; 74(1):242-55. PubMed ID: 9449326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and gating mechanism of the acetylcholine receptor pore.
    Miyazawa A; Fujiyoshi Y; Unwin N
    Nature; 2003 Jun; 423(6943):949-55. PubMed ID: 12827192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the transmembrane domain of the acetylcholine receptor.
    Song C; Corry B
    Eur Biophys J; 2009 Sep; 38(7):961-70. PubMed ID: 19466401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico models for the human alpha4beta2 nicotinic acetylcholine receptor.
    Haddadian EJ; Cheng MH; Coalson RD; Xu Y; Tang P
    J Phys Chem B; 2008 Nov; 112(44):13981-90. PubMed ID: 18847252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical approach to predicting permeation in ion channels.
    Mashl RJ; Tang Y; Schnitzer J; Jakobsson E
    Biophys J; 2001 Nov; 81(5):2473-83. PubMed ID: 11606263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.
    Hung A; Tai K; Sansom MS
    Biophys J; 2005 May; 88(5):3321-33. PubMed ID: 15722430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.