These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
917 related articles for article (PubMed ID: 16284266)
1. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Sot J; Bagatolli LA; Goñi FM; Alonso A Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266 [TBL] [Abstract][Full Text] [Related]
2. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams. Sot J; Manni MM; Viguera AR; Castañeda V; Cano A; Alonso C; Gil D; Valle M; Alonso A; Goñi FM Biophys J; 2014 Dec; 107(12):2828-2837. PubMed ID: 25517149 [TBL] [Abstract][Full Text] [Related]
3. The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition. Ahyayauch H; Arnulphi C; Sot J; Alonso A; Goñi FM Chem Phys Lipids; 2013; 167-168():57-61. PubMed ID: 23453949 [TBL] [Abstract][Full Text] [Related]
4. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine. Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347 [TBL] [Abstract][Full Text] [Related]
5. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles. Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187 [TBL] [Abstract][Full Text] [Related]
6. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity. Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542 [TBL] [Abstract][Full Text] [Related]
7. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts. McIntosh TJ; Vidal A; Simon SA Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280 [TBL] [Abstract][Full Text] [Related]
8. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains. Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol. González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341 [TBL] [Abstract][Full Text] [Related]
10. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Gandhavadi M; Allende D; Vidal A; Simon SA; McIntosh TJ Biophys J; 2002 Mar; 82(3):1469-82. PubMed ID: 11867462 [TBL] [Abstract][Full Text] [Related]
11. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Härtel S; Fanani ML; Maggio B Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298 [TBL] [Abstract][Full Text] [Related]
12. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis. Montes LR; López DJ; Sot J; Bagatolli LA; Stonehouse MJ; Vasil ML; Wu BX; Hannun YA; Goñi FM; Alonso A Biochemistry; 2008 Oct; 47(43):11222-30. PubMed ID: 18826261 [TBL] [Abstract][Full Text] [Related]
13. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Holopainen JM; Subramanian M; Kinnunen PK Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872 [TBL] [Abstract][Full Text] [Related]
14. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Massey JB Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156 [TBL] [Abstract][Full Text] [Related]
16. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Shaikh SR; Dumaual AC; Castillo A; LoCascio D; Siddiqui RA; Stillwell W; Wassall SR Biophys J; 2004 Sep; 87(3):1752-66. PubMed ID: 15345554 [TBL] [Abstract][Full Text] [Related]
17. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers. Busto JV; Fanani ML; De Tullio L; Sot J; Maggio B; Goñi FM; Alonso A Biophys J; 2009 Nov; 97(10):2717-26. PubMed ID: 19917225 [TBL] [Abstract][Full Text] [Related]
18. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation. Pathak P; London E Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740 [TBL] [Abstract][Full Text] [Related]
19. Exploring polar headgroup interactions between sphingomyelin and ceramide with infrared spectroscopy. de la Arada I; González-Ramírez EJ; Alonso A; Goñi FM; Arrondo JR Sci Rep; 2020 Oct; 10(1):17606. PubMed ID: 33077787 [TBL] [Abstract][Full Text] [Related]
20. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. Heerklotz H; Szadkowska H; Anderson T; Seelig J J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]