BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

919 related articles for article (PubMed ID: 16284266)

  • 1. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J; Bagatolli LA; Goñi FM; Alonso A
    Biophys J; 2006 Feb; 90(3):903-14. PubMed ID: 16284266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams.
    Sot J; Manni MM; Viguera AR; Castañeda V; Cano A; Alonso C; Gil D; Valle M; Alonso A; Goñi FM
    Biophys J; 2014 Dec; 107(12):2828-2837. PubMed ID: 25517149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The onset of Triton X-100 solubilization of sphingomyelin/ceramide bilayers: effects of temperature and composition.
    Ahyayauch H; Arnulphi C; Sot J; Alonso A; Goñi FM
    Chem Phys Lipids; 2013; 167-168():57-61. PubMed ID: 23453949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triton X-100 partitioning into sphingomyelin bilayers at subsolubilizing detergent concentrations: effect of lipid phase and a comparison with dipalmitoylphosphatidylcholine.
    Arnulphi C; Sot J; García-Pacios M; Arrondo JL; Alonso A; Goñi FM
    Biophys J; 2007 Nov; 93(10):3504-14. PubMed ID: 17675347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol displacement by ceramide in sphingomyelin-containing liquid-ordered domains, and generation of gel regions in giant lipidic vesicles.
    Sot J; Ibarguren M; Busto JV; Montes LR; Goñi FM; Alonso A
    FEBS Lett; 2008 Sep; 582(21-22):3230-6. PubMed ID: 18755187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorting of lipids and transmembrane peptides between detergent-soluble bilayers and detergent-resistant rafts.
    McIntosh TJ; Vidal A; Simon SA
    Biophys J; 2003 Sep; 85(3):1656-66. PubMed ID: 12944280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ; Artetxe I; García-Arribas AB; Goñi FM; Alonso A
    Langmuir; 2019 Apr; 35(15):5305-5315. PubMed ID: 30924341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts.
    Gandhavadi M; Allende D; Vidal A; Simon SA; McIntosh TJ
    Biophys J; 2002 Mar; 82(3):1469-82. PubMed ID: 11867462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ceramide-enriched membrane domains in red blood cells and the mechanism of sphingomyelinase-induced hot-cold hemolysis.
    Montes LR; López DJ; Sot J; Bagatolli LA; Stonehouse MJ; Vasil ML; Wu BX; Hannun YA; Goñi FM; Alonso A
    Biochemistry; 2008 Oct; 47(43):11222-30. PubMed ID: 18826261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers.
    Massey JB
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):167-84. PubMed ID: 11342156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triton promotes domain formation in lipid raft mixtures.
    Heerklotz H
    Biophys J; 2002 Nov; 83(5):2693-701. PubMed ID: 12414701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study.
    Shaikh SR; Dumaual AC; Castillo A; LoCascio D; Siddiqui RA; Stillwell W; Wassall SR
    Biophys J; 2004 Sep; 87(3):1752-66. PubMed ID: 15345554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexistence of immiscible mixtures of palmitoylsphingomyelin and palmitoylceramide in monolayers and bilayers.
    Busto JV; Fanani ML; De Tullio L; Sot J; Maggio B; Goñi FM; Alonso A
    Biophys J; 2009 Nov; 97(10):2717-26. PubMed ID: 19917225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring polar headgroup interactions between sphingomyelin and ceramide with infrared spectroscopy.
    de la Arada I; González-Ramírez EJ; Alonso A; Goñi FM; Arrondo JR
    Sci Rep; 2020 Oct; 10(1):17606. PubMed ID: 33077787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton.
    Heerklotz H; Szadkowska H; Anderson T; Seelig J
    J Mol Biol; 2003 Jun; 329(4):793-9. PubMed ID: 12787678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.