BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 16284269)

  • 1. Calculation of absolute protein-ligand binding affinity using path and endpoint approaches.
    Lee MS; Olson MA
    Biophys J; 2006 Feb; 90(3):864-77. PubMed ID: 16284269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the differential effects of hydrogen bonding and water release on the binding of FK506 to native and Tyr82-->Phe82 FKBP-12 proteins using free energy simulations.
    Pearlman DA; Connelly PR
    J Mol Biol; 1995 May; 248(3):696-717. PubMed ID: 7538591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enthalpy of hydrogen bond formation in a protein-ligand binding reaction.
    Connelly PR; Aldape RA; Bruzzese FJ; Chambers SP; Fitzgibbon MJ; Fleming MA; Itoh S; Livingston DJ; Navia MA; Thomson JA
    Proc Natl Acad Sci U S A; 1994 Mar; 91(5):1964-8. PubMed ID: 7510408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray structures of small ligand-FKBP complexes provide an estimate for hydrophobic interaction energies.
    Burkhard P; Taylor P; Walkinshaw MD
    J Mol Biol; 2000 Jan; 295(4):953-62. PubMed ID: 10656803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct calculation of the binding free energies of FKBP ligands.
    Fujitani H; Tanida Y; Ito M; Jayachandran G; Snow CD; Shirts MR; Sorin EJ; Pande VS
    J Chem Phys; 2005 Aug; 123(8):084108. PubMed ID: 16164283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of protein-ligand binding affinities.
    Gilson MK; Zhou HX
    Annu Rev Biophys Biomol Struct; 2007; 36():21-42. PubMed ID: 17201676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular anchors with large stability gaps ensure linear binding free energy relationships for hydrophobic substituents.
    Rejto PA; Verkhivker GM
    Pac Symp Biocomput; 1998; ():362-73. PubMed ID: 9697196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimates of ligand-binding affinities supported by quantum mechanical methods.
    Söderhjelm P; Kongsted J; Genheden S; Ryde U
    Interdiscip Sci; 2010 Mar; 2(1):21-37. PubMed ID: 20640794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design.
    Chen W; Chang CE; Gilson MK
    Biophys J; 2004 Nov; 87(5):3035-49. PubMed ID: 15339804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations.
    Verkhivker GM
    Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of absolute protein-ligand binding free energy from computer simulations.
    Woo HJ; Roux B
    Proc Natl Acad Sci U S A; 2005 May; 102(19):6825-30. PubMed ID: 15867154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein.
    Musah RA; Jensen GM; Bunte SW; Rosenfeld RJ; Goodin DB
    J Mol Biol; 2002 Jan; 315(4):845-57. PubMed ID: 11812152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP.
    Zacharias M
    Proteins; 2004 Mar; 54(4):759-67. PubMed ID: 14997571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition.
    Dullweber F; Stubbs MT; Musil D; Stürzebecher J; Klebe G
    J Mol Biol; 2001 Oct; 313(3):593-614. PubMed ID: 11676542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of absolute protein-ligand binding constants with the molecular dynamics free energy perturbation method.
    Woo HJ
    Methods Mol Biol; 2008; 443():109-20. PubMed ID: 18446284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the interfacial water content in protein-protein complexes from free energy simulations.
    Monecke P; Borosch T; Brickmann J; Kast SM
    Biophys J; 2006 Feb; 90(3):841-50. PubMed ID: 16284258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space.
    Naïm M; Bhat S; Rankin KN; Dennis S; Chowdhury SF; Siddiqi I; Drabik P; Sulea T; Bayly CI; Jakalian A; Purisima EO
    J Chem Inf Model; 2007; 47(1):122-33. PubMed ID: 17238257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlating structure and energetics in protein-ligand interactions: paradigms and paradoxes.
    Martin SF; Clements JH
    Annu Rev Biochem; 2013; 82():267-93. PubMed ID: 23746256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.