These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16284273)

  • 1. Melanosomes transported by myosin-V in Xenopus melanophores perform slow 35 nm steps.
    Levi V; Gelfand VI; Serpinskaya AS; Gratton E
    Biophys J; 2006 Jan; 90(1):L07-9. PubMed ID: 16284273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracking melanosomes inside a cell to study molecular motors and their interaction.
    Kural C; Serpinskaya AS; Chou YH; Goldman RD; Gelfand VI; Selvin PR
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5378-82. PubMed ID: 17369356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organelle transport along microtubules in Xenopus melanophores: evidence for cooperation between multiple motors.
    Levi V; Serpinskaya AS; Gratton E; Gelfand V
    Biophys J; 2006 Jan; 90(1):318-27. PubMed ID: 16214870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous dynamics of melanosomes driven by myosin-V in Xenopus laevis melanophores.
    Brunstein M; Bruno L; Desposito M; Levi V
    Biophys J; 2009 Sep; 97(6):1548-57. PubMed ID: 19751659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterotrimeric kinesin II is the microtubule motor protein responsible for pigment dispersion in Xenopus melanophores.
    Tuma MC; Zill A; Le Bot N; Vernos I; Gelfand V
    J Cell Biol; 1998 Dec; 143(6):1547-58. PubMed ID: 9852150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of pigment transport in melanophores.
    Tuma MC; Gelfand VI
    Pigment Cell Res; 1999 Oct; 12(5):283-94. PubMed ID: 10541038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions and regulation of molecular motors in Xenopus melanophores.
    Gross SP; Tuma MC; Deacon SW; Serpinskaya AS; Reilein AR; Gelfand VI
    J Cell Biol; 2002 Mar; 156(5):855-65. PubMed ID: 11864991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of melanosome movement in the cell cycle by reversible association with myosin V.
    Rogers SL; Karcher RL; Roland JT; Minin AA; Steffen W; Gelfand VI
    J Cell Biol; 1999 Sep; 146(6):1265-76. PubMed ID: 10491390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic detection of melanosome transport in Xenopus laevis melanophores.
    Frost R; Norström E; Bodin L; Langhammer C; Sturve J; Wallin M; Svedhem S
    Anal Biochem; 2013 Apr; 435(1):10-8. PubMed ID: 23262280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores.
    Aspengren S; Wallin M
    Pigment Cell Res; 2004 Jun; 17(3):295-301. PubMed ID: 15140076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vesicle transport: the role of actin filaments and myosin motors.
    DePina AS; Langford GM
    Microsc Res Tech; 1999 Oct; 47(2):93-106. PubMed ID: 10523788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin V stepping mechanism.
    Cappello G; Pierobon P; Symonds C; Busoni L; Gebhardt JC; Rief M; Prost J
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15328-33. PubMed ID: 17878301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition to superdiffusive behavior in intracellular actin-based transport mediated by molecular motors.
    Bruno L; Levi V; Brunstein M; Despósito MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011912. PubMed ID: 19658734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of acrylamide, latrunculin, and nocodazole on intracellular transport and cytoskeletal organization in melanophores.
    Aspengren S; Wielbass L; Wallin M
    Cell Motil Cytoskeleton; 2006 Jul; 63(7):423-36. PubMed ID: 16671098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The melanosome as a model to study organelle motility in mammals.
    Barral DC; Seabra MC
    Pigment Cell Res; 2004 Apr; 17(2):111-8. PubMed ID: 15016299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exchange of microtubule molecular motors during melanosome transport in Xenopus laevis melanophores is triggered by collisions with intracellular obstacles.
    Bruno L; Echarte MM; Levi V
    Cell Biochem Biophys; 2008; 52(3):191-201. PubMed ID: 19002657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-dependent detachment of kinesin-2 biases track switching at cytoskeletal filament intersections.
    Schroeder HW; Hendricks AG; Ikeda K; Shuman H; Rodionov V; Ikebe M; Goldman YE; Holzbaur EL
    Biophys J; 2012 Jul; 103(1):48-58. PubMed ID: 22828331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistics of active transport in Xenopus melanophores cells.
    Snezhko A; Barlan K; Aranson IS; Gelfand VI
    Biophys J; 2010 Nov; 99(10):3216-23. PubMed ID: 21081069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity.
    Warshaw DM; Kennedy GG; Work SS; Krementsova EB; Beck S; Trybus KM
    Biophys J; 2005 May; 88(5):L30-2. PubMed ID: 15764654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytoskeleton in fish melanophore melanosome positioning.
    Sköld HN; Aspengren S; Wallin M
    Microsc Res Tech; 2002 Sep; 58(6):464-9. PubMed ID: 12242703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.