BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 16284941)

  • 1. Analysis of Meox-2 mutant mice reveals a novel postfusion-based cleft palate.
    Jin JZ; Ding J
    Dev Dyn; 2006 Feb; 235(2):539-46. PubMed ID: 16284941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression analysis reveals that formation of the mouse anterior secondary palate involves recruitment of cells from the posterior side.
    Li Q; Ding J
    Int J Dev Biol; 2007; 51(2):167-72. PubMed ID: 17294368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hoxa2 plays a direct role in murine palate development.
    Smith TM; Wang X; Zhang W; Kulyk W; Nazarali AJ
    Dev Dyn; 2009 Sep; 238(9):2364-73. PubMed ID: 19653318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate.
    Yu L; Gu S; Alappat S; Song Y; Yan M; Zhang X; Zhang G; Jiang Y; Zhang Z; Zhang Y; Chen Y
    Development; 2005 Oct; 132(19):4397-406. PubMed ID: 16141225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM; Shiomi N; Chen J; Saito T; Yamamoto T; Ito Y; Bringas P; Chai Y; Shuler CF
    Dev Biol; 2005 Feb; 278(1):193-202. PubMed ID: 15649471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gli3-deficient mice exhibit cleft palate associated with abnormal tongue development.
    Huang X; Goudy SL; Ketova T; Litingtung Y; Chiang C
    Dev Dyn; 2008 Oct; 237(10):3079-87. PubMed ID: 18816854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of cell migration, transdifferentiation and apoptosis during mouse secondary palate fusion.
    Jin JZ; Ding J
    Development; 2006 Sep; 133(17):3341-7. PubMed ID: 16887819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TGF-beta(3)-induced chondroitin sulphate proteoglycan mediates palatal shelf adhesion.
    Gato A; Martinez ML; Tudela C; Alonso I; Moro JA; Formoso MA; Ferguson MW; Martínez-Alvarez C
    Dev Biol; 2002 Oct; 250(2):393-405. PubMed ID: 12376112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental induction of palate shelf elevation in glutamate decarboxylase 67-deficient mice with cleft palate due to vertically oriented palatal shelf.
    Iseki S; Ishii-Suzuki M; Tsunekawa N; Yamada Y; Eto K; Obata K
    Birth Defects Res A Clin Mol Teratol; 2007 Oct; 79(10):688-95. PubMed ID: 17849453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice.
    Zhang Y; Mori T; Iseki K; Hagino S; Takaki H; Takeuchi M; Hikake T; Tase C; Murakawa M; Yokoya S; Wanaka A
    Dev Dyn; 2003 Apr; 226(4):618-26. PubMed ID: 12666199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of apoptotic cell death and cell cycle perturbation in retinoic acid-induced cleft palate in mice.
    Okano J; Suzuki S; Shiota K
    Toxicol Appl Pharmacol; 2007 May; 221(1):42-56. PubMed ID: 17442359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleft palate by picrotoxin or 3-MP and palatal shelf elevation in GABA-deficient mice.
    Ding R; Tsunekawa N; Obata K
    Neurotoxicol Teratol; 2004; 26(4):587-92. PubMed ID: 15203181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional role of transforming growth factor-beta type III receptor during palatal fusion.
    Nakajima A; Ito Y; Asano M; Maeno M; Iwata K; Mitsui N; Shimizu N; Cui XM; Shuler CF
    Dev Dyn; 2007 Mar; 236(3):791-801. PubMed ID: 17295310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of phenytoin on Satb2 and Hoxa2 gene expressions in mouse embryonic craniofacial tissue.
    Mao XY; Tang SJ
    Biochem Cell Biol; 2010 Aug; 88(4):731-5. PubMed ID: 20651846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and requirement of T-box transcription factors Tbx2 and Tbx3 during secondary palate development in the mouse.
    Zirzow S; Lüdtke TH; Brons JF; Petry M; Christoffels VM; Kispert A
    Dev Biol; 2009 Dec; 336(2):145-55. PubMed ID: 19769959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional heterogeneity in the developing palate: morphological and molecular evidence for normal and abnormal palatogenesis.
    Okano J; Suzuki S; Shiota K
    Congenit Anom (Kyoto); 2006 Jun; 46(2):49-54. PubMed ID: 16732762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epithelial changes of the nasal columella of the palatal slit and cleft palate defects in C57BL/6 mouse fetuses.
    Kusanagi T
    Teratology; 1985 Feb; 31(1):111-7. PubMed ID: 3983853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of apoptosis in retinoic acid-induced cleft palate.
    Choi JW; Park HW; Kwon YJ; Park BY
    J Craniofac Surg; 2011 Sep; 22(5):1567-71. PubMed ID: 21959388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The etiopathogenesis of cleft lip and cleft palate: usefulness and caveats of mouse models.
    Gritli-Linde A
    Curr Top Dev Biol; 2008; 84():37-138. PubMed ID: 19186243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.