These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16285026)

  • 1. Protein interactions within calcium release units of muscle.
    Franzini-Armstrong C; Tijskens P; Jones LR
    J Muscle Res Cell Motil; 2004; 25(8):586-7. PubMed ID: 16285026
    [No Abstract]   [Full Text] [Related]  

  • 2. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterization of calsequestrin-binding 30-kDa protein in sarcoplasmic reticulum of skeletal muscle.
    Kagari T; Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1996 Oct; 227(3):700-6. PubMed ID: 8885997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural alterations in cardiac calcium release units resulting from overexpression of junctin.
    Zhang L; Franzini-Armstrong C; Ramesh V; Jones LR
    J Mol Cell Cardiol; 2001 Feb; 33(2):233-47. PubMed ID: 11162129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling.
    Kirchhefer U; Hanske G; Jones LR; Justus I; Kaestner L; Lipp P; Schmitz W; Neumann J
    Cell Calcium; 2006 Feb; 39(2):131-42. PubMed ID: 16289269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sarcoplasmic reticulum calcium overloading in junctin deficiency enhances cardiac contractility but increases ventricular automaticity.
    Yuan Q; Fan GC; Dong M; Altschafl B; Diwan A; Ren X; Hahn HH; Zhao W; Waggoner JR; Jones LR; Jones WK; Bers DM; Dorn GW; Wang HS; Valdivia HH; Chu G; Kranias EG
    Circulation; 2007 Jan; 115(3):300-9. PubMed ID: 17224479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle.
    Glover L; Culligan K; Cala S; Mulvey C; Ohlendieck K
    Biochim Biophys Acta; 2001 Dec; 1515(2):120-32. PubMed ID: 11718668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis.
    Boncompagni S; Thomas M; Lopez JR; Allen PD; Yuan Q; Kranias EG; Franzini-Armstrong C; Perez CF
    PLoS One; 2012; 7(7):e39962. PubMed ID: 22768324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The long and winding road home: how junctin and triadin find their way to the junctional SR.
    Drum BM; Santana LF
    J Mol Cell Cardiol; 2015 Apr; 81():15-7. PubMed ID: 25655931
    [No Abstract]   [Full Text] [Related]  

  • 11. Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease.
    Györke S; Terentyev D
    Cardiovasc Res; 2008 Jan; 77(2):245-55. PubMed ID: 18006456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biosynthesis and localization of sarcoplasmic reticulum proteins in dysgenic (mdg/mdg) mouse cells.
    Essien FB; Jorgensen AO; Kalnins VI; Zubrzycka E; MacLennan DH
    Lab Invest; 1977 Dec; 37(6):562-8. PubMed ID: 146110
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of Junctin protein interactions in cellular dynamics of calsequestrin polymer upon calcium perturbation.
    Lee KW; Maeng JS; Choi JY; Lee YR; Hwang CY; Park SS; Park HK; Chung BH; Lee SG; Kim YS; Jeon H; Eom SH; Kang C; Kim DH; Kwon KS
    J Biol Chem; 2012 Jan; 287(3):1679-87. PubMed ID: 22123818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric distribution of calcium binding sites of sarcoplasmic reticulum fragments.
    Miyamoto H; Kasai M
    J Biochem; 1979 Mar; 85(3):765-73. PubMed ID: 429264
    [No Abstract]   [Full Text] [Related]  

  • 15. Transitions of protein traffic from cardiac ER to junctional SR.
    Sleiman NH; McFarland TP; Jones LR; Cala SE
    J Mol Cell Cardiol; 2015 Apr; 81():34-45. PubMed ID: 25640161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of HRC (histidine-rich Ca(2+)-binding protein) and triadin in the lumen of sarcoplasmic reticulum.
    Lee HG; Kang H; Kim DH; Park WJ
    J Biol Chem; 2001 Oct; 276(43):39533-8. PubMed ID: 11504710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negative surface charges provoke conformational change of membrane proteins and release of calcium from sarcoplasmic reticulum.
    Liu G; Oba T
    Prog Clin Biol Res; 1990; 327():779-84. PubMed ID: 2320630
    [No Abstract]   [Full Text] [Related]  

  • 18. Targeting sarcoplasmic reticulum calcium handling proteins as therapy for cardiac disease.
    Gregory KN; Kranias EG
    Hellenic J Cardiol; 2006; 47(3):132-43. PubMed ID: 16862819
    [No Abstract]   [Full Text] [Related]  

  • 19. Calsequestrin mutant D307H exhibits depressed binding to its protein targets and a depressed response to calcium.
    Houle TD; Ram ML; Cala SE
    Cardiovasc Res; 2004 Nov; 64(2):227-33. PubMed ID: 15485681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location of the peripheral proteins in sarcoplasmic reticulum vesicles.
    Zubrzycka E; Korczak B; Sarzała MG; Drabikowski W
    FEBS Lett; 1978 Jun; 90(2):215-7. PubMed ID: 668884
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.