These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 16285450)
1. Transcranial ultrasound focus reconstruction with phase and amplitude correction. White J; Clement GT; Hynynen K IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1518-22. PubMed ID: 16285450 [TBL] [Abstract][Full Text] [Related]
2. A numerical study of transcranial focused ultrasound beam propagation at low frequency. Yin X; Hynynen K Phys Med Biol; 2005 Apr; 50(8):1821-36. PubMed ID: 15815098 [TBL] [Abstract][Full Text] [Related]
3. Local frequency dependence in transcranial ultrasound transmission. White PJ; Clement GT; Hynynen K Phys Med Biol; 2006 May; 51(9):2293-305. PubMed ID: 16625043 [TBL] [Abstract][Full Text] [Related]
4. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605 [TBL] [Abstract][Full Text] [Related]
5. A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Deng L; O'Reilly MA; Jones RM; An R; Hynynen K Phys Med Biol; 2016 Dec; 61(24):8476-8501. PubMed ID: 27845920 [TBL] [Abstract][Full Text] [Related]
6. Phase aberration correction using ultrasound radiation force and vibrometry optimization. Urban MW; Bernal M; Greenleaf JF IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1142-53. PubMed ID: 17571813 [TBL] [Abstract][Full Text] [Related]
7. Energy-based adaptive focusing of waves: application to noninvasive aberration correction of ultrasonic wavefields. Herbert E; Pernot M; Montaldo G; Fink M; Tanter M IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Nov; 56(11):2388-99. PubMed ID: 19942526 [TBL] [Abstract][Full Text] [Related]
8. The effects of image homogenisation on simulated transcranial ultrasound propagation. Robertson J; Urban J; Stitzel J; Treeby BE Phys Med Biol; 2018 Jul; 63(14):145014. PubMed ID: 29897047 [TBL] [Abstract][Full Text] [Related]
9. Focusing of therapeutic ultrasound through a human skull: a numerical study. Sun J; Hynynen K J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1705-15. PubMed ID: 9745750 [TBL] [Abstract][Full Text] [Related]
10. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria. Miller GW; Eames M; Snell J; Aubry JF Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016 [TBL] [Abstract][Full Text] [Related]
11. 3-D transcranial ultrasound imaging with bilateral phase aberration correction of multiple isoplanatic patches: a pilot human study with microbubble contrast enhancement. Lindsey BD; Nicoletto HA; Bennett ER; Laskowitz DT; Smith SW Ultrasound Med Biol; 2014 Jan; 40(1):90-101. PubMed ID: 24239360 [TBL] [Abstract][Full Text] [Related]
12. Method to optimize the placement of a single-element transducer for transcranial focused ultrasound. Park TY; Pahk KJ; Kim H Comput Methods Programs Biomed; 2019 Oct; 179():104982. PubMed ID: 31443869 [TBL] [Abstract][Full Text] [Related]
13. Potential of microbubbles for use as point targets in phase aberration correction. Psychoudakis D; Fowlkes JB; Volakis JL; Carson PL IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1639-48. PubMed ID: 15690724 [TBL] [Abstract][Full Text] [Related]
14. Investigation of a large-area phased array for focused ultrasound surgery through the skull. Clement GT; White J; Hynynen K Phys Med Biol; 2000 Apr; 45(4):1071-83. PubMed ID: 10795992 [TBL] [Abstract][Full Text] [Related]
15. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature. Gâteau J; Marsac L; Pernot M; Aubry JF; Tanter M; Fink M IEEE Trans Biomed Eng; 2010 Jan; 57(1):134-44. PubMed ID: 19770084 [TBL] [Abstract][Full Text] [Related]
17. Effects of nonlinear ultrasound propagation on high intensity brain therapy. Pinton G; Aubry JF; Fink M; Tanter M Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833 [TBL] [Abstract][Full Text] [Related]
18. Phase-aberration correction with a 3-D ultrasound scanner: feasibility study. Ivancevich NM; Dahl JJ; Trahey GE; Smith SW IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Aug; 53(8):1432-9. PubMed ID: 16921895 [TBL] [Abstract][Full Text] [Related]
19. Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. Liu HL; Tsai CH; Jan CK; Chang HY; Huang SM; Li ML; Qiu W; Zheng H IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1756-1767. PubMed ID: 30010555 [TBL] [Abstract][Full Text] [Related]
20. Numerical and experimental evaluation of low-intensity transcranial focused ultrasound wave propagation using human skulls for brain neuromodulation. Chen M; Peng C; Wu H; Huang CC; Kim T; Traylor Z; Muller M; Chhatbar PY; Nam CS; Feng W; Jiang X Med Phys; 2023 Jan; 50(1):38-49. PubMed ID: 36342303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]