These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 16285451)
41. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force. Ergün AS Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399 [TBL] [Abstract][Full Text] [Related]
42. Treatment of localised prostate cancer with transrectal high intensity focused ultrasound. Chapelon JY; Ribault M; Vernier F; Souchon R; Gelet A Eur J Ultrasound; 1999 Mar; 9(1):31-8. PubMed ID: 10099164 [TBL] [Abstract][Full Text] [Related]
43. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU). Wang M; Zhou Y Int J Hyperthermia; 2016 Aug; 32(5):569-82. PubMed ID: 27145871 [TBL] [Abstract][Full Text] [Related]
44. The design and characterization of an ultrasound phased array suitable for deep tissue hyperthermia. Aitkenhead AH; Mills JA; Wilson AJ Ultrasound Med Biol; 2008 Nov; 34(11):1793-807. PubMed ID: 18571831 [TBL] [Abstract][Full Text] [Related]
45. Split-focused ultrasound transducer with multidirectional heating for breast tumor thermal surgery. Cheng TY; Ju KC; Ho CS; Chen YY; Chang H; Lin WL Med Phys; 2008 Apr; 35(4):1387-97. PubMed ID: 18491533 [TBL] [Abstract][Full Text] [Related]
46. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability. Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104 [TBL] [Abstract][Full Text] [Related]
47. Design and development of a prototype endocavitary probe for high-intensity focused ultrasound delivery with integrated magnetic resonance imaging. Wharton IP; Rivens IH; Ter Haar GR; Gilderdale DJ; Collins DJ; Hand JW; Abel PD; deSouza NM J Magn Reson Imaging; 2007 Mar; 25(3):548-56. PubMed ID: 17279503 [TBL] [Abstract][Full Text] [Related]
48. A random phased array device for delivery of high intensity focused ultrasound. Hand JW; Shaw A; Sadhoo N; Rajagopal S; Dickinson RJ; Gavrilov LR Phys Med Biol; 2009 Oct; 54(19):5675-93. PubMed ID: 19724099 [TBL] [Abstract][Full Text] [Related]
49. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer. N'djin WA; Burtnyk M; Bronskill M; Chopra R Int J Hyperthermia; 2012; 28(1):87-104. PubMed ID: 22235788 [TBL] [Abstract][Full Text] [Related]
50. Deployable cylindrical phased-array applicator mimicking a concentric-ring configuration for minimally-invasive delivery of therapeutic ultrasound. Adams MS; Diederich CJ Phys Med Biol; 2019 Jun; 64(12):125001. PubMed ID: 31108478 [TBL] [Abstract][Full Text] [Related]
51. Circumferential lesion formation around the pulmonary veins in the left atrium with focused ultrasound using a 2D-array endoesophageal device: a numerical study. Pichardo S; Hynynen K Phys Med Biol; 2007 Aug; 52(16):4923-42. PubMed ID: 17671344 [TBL] [Abstract][Full Text] [Related]
52. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms. Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751 [TBL] [Abstract][Full Text] [Related]
53. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors. Chen JY; Gandhi OP IEEE Trans Biomed Eng; 1992 Mar; 39(3):209-16. PubMed ID: 1555850 [TBL] [Abstract][Full Text] [Related]
54. Catheter ultrasound phased-array transducers for thermal ablation: a feasibility study. Gentry KL; Sachedina N; Smith SW Ultrason Imaging; 2005 Apr; 27(2):89-100. PubMed ID: 16231838 [TBL] [Abstract][Full Text] [Related]
55. Phase estimation for a phased array therapeutic interstitial ultrasound probe. Yang Z; Dillenseger JL Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():472-5. PubMed ID: 23365931 [TBL] [Abstract][Full Text] [Related]
56. Experimental evaluation of lesion prediction modelling in the presence of cavitation bubbles: intended for high-intensity focused ultrasound prostate treatment. Curiel L; Chavrier F; Gignoux B; Pichardo S; Chesnais S; Chapelon JY Med Biol Eng Comput; 2004 Jan; 42(1):44-54. PubMed ID: 14977222 [TBL] [Abstract][Full Text] [Related]
57. Myocardial lesion formation using high-intensity focused ultrasound. Engel DJ; Muratore R; Hirata K; Otsuka R; Fujikura K; Sugioka K; Marboe C; Lizzi FL; Homma S J Am Soc Echocardiogr; 2006 Jul; 19(7):932-7. PubMed ID: 16825005 [TBL] [Abstract][Full Text] [Related]
58. Image-guided 256-element phased-array focused ultrasound surgery. Lu M; Wang X; Wan M; Feng Y; Xu F; Zhong H; Tan J IEEE Eng Med Biol Mag; 2008; 27(5):84-90. PubMed ID: 18799395 [No Abstract] [Full Text] [Related]
59. Evaluation of multielement catheter-cooled interstitial ultrasound applicators for high-temperature thermal therapy. Nau WH; Diederich CJ; Burdette EC Med Phys; 2001 Jul; 28(7):1525-34. PubMed ID: 11488586 [TBL] [Abstract][Full Text] [Related]
60. Nonlinear absorption in biological tissue for high intensity focused ultrasound. Liu X; Li J; Gong X; Zhang D Ultrasonics; 2006 Dec; 44 Suppl 1():e27-30. PubMed ID: 16844166 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]