These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 1628624)

  • 41. RNase activity of polynucleotide phosphorylase is critical at low temperature in Escherichia coli and is complemented by RNase II.
    Awano N; Inouye M; Phadtare S
    J Bacteriol; 2008 Sep; 190(17):5924-33. PubMed ID: 18606734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transcription of the rpsO-pnp operon of Streptomyces coelicolor involves four temporally regulated, stress responsive promoters.
    Bralley P; Gatewood ML; Jones GH
    Gene; 2014 Feb; 536(1):177-85. PubMed ID: 24211388
    [TBL] [Abstract][Full Text] [Related]  

  • 43. mRNA processing independent of RNase III and RNase E in the expression of the F1845 fimbrial adhesin of Escherichia coli.
    Bilge SS; Apostol JM; Aldape MA; Moseley SL
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1455-9. PubMed ID: 8094558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Airpnp: Auto- and Integrated Regulation of Polynucleotide Phosphorylase.
    Condon C
    J Bacteriol; 2015 Dec; 197(24):3748-50. PubMed ID: 26438817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The small RNA SraG participates in PNPase homeostasis.
    Fontaine F; Gasiorowski E; Gracia C; Ballouche M; Caillet J; Marchais A; Hajnsdorf E
    RNA; 2016 Oct; 22(10):1560-73. PubMed ID: 27495318
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteins associated with RNase E in a multicomponent ribonucleolytic complex.
    Miczak A; Kaberdin VR; Wei CL; Lin-Chao S
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):3865-9. PubMed ID: 8632981
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A mutation in polynucleotide phosphorylase from Escherichia coli impairing RNA binding and degradosome stability.
    Regonesi ME; Briani F; Ghetta A; Zangrossi S; Ghisotti D; Tortora P; Dehò G
    Nucleic Acids Res; 2004; 32(3):1006-17. PubMed ID: 14963263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Escherichia coli RNase III (rnc) autoregulation occurs independently of rnc gene translation.
    Matsunaga J; Simons EL; Simons RW
    Mol Microbiol; 1997 Dec; 26(5):1125-35. PubMed ID: 9426147
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide sequence of the pnp gene of Escherichia coli encoding polynucleotide phosphorylase. Homology of the primary structure of the protein with the RNA-binding domain of ribosomal protein S1.
    Régnier P; Grunberg-Manago M; Portier C
    J Biol Chem; 1987 Jan; 262(1):63-8. PubMed ID: 2432069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro processing activity of Bacillus subtilis polynucleotide phosphorylase.
    Mitra S; Hue K; Bechhofer DH
    Mol Microbiol; 1996 Jan; 19(2):329-42. PubMed ID: 8825778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli RNase E and RNase G cleave a Bacillus subtilis transcript at the same site in a structure-dependent manner.
    Hambraeus G; Rutberg B
    Arch Microbiol; 2004 Feb; 181(2):137-43. PubMed ID: 14685649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mutational analysis of polynucleotide phosphorylase from Escherichia coli.
    Jarrige A; Bréchemier-Baey D; Mathy N; Duché O; Portier C
    J Mol Biol; 2002 Aug; 321(3):397-409. PubMed ID: 12162954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNases in ColE1 DNA metabolism.
    Jung YH; Lee Y
    Mol Biol Rep; 1995-1996; 22(2-3):195-200. PubMed ID: 8901510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12.
    Donovan WP; Kushner SR
    Proc Natl Acad Sci U S A; 1986 Jan; 83(1):120-4. PubMed ID: 2417233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Autoregulation of RNase III operon by mRNA processing.
    Bardwell JC; Régnier P; Chen SM; Nakamura Y; Grunberg-Manago M; Court DL
    EMBO J; 1989 Nov; 8(11):3401-7. PubMed ID: 2583104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of a new temperature-sensitive polynucleotide phosphorylase mutation in Escherichia coli K-12.
    Yancey SD; Kushner SR
    Biochimie; 1990 Nov; 72(11):835-43. PubMed ID: 2085546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new role for RNase II in mRNA decay: striking differences between RNase II mutants and similarities with a strain deficient in RNase E.
    Cruz AA; Marujo PE; Newbury SF; Arraiano CM
    FEMS Microbiol Lett; 1996 Dec; 145(3):315-24. PubMed ID: 8978085
    [TBL] [Abstract][Full Text] [Related]  

  • 58. PNPase modulates RNase II expression in Escherichia coli: implications for mRNA decay and cell metabolism.
    Zilhão R; Cairrão F; Régnier P; Arraiano CM
    Mol Microbiol; 1996 Jun; 20(5):1033-42. PubMed ID: 8809756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of ribonuclease III in the enhancement of expression of the speF-potE operon encoding inducible ornithine decarboxylase and polyamine transport protein.
    Kashiwagi K; Watanabe R; Igarashi K
    Biochem Biophys Res Commun; 1994 Apr; 200(1):591-7. PubMed ID: 8166735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.