These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16286242)

  • 1. A signaling role for dystrophin: inhibiting skeletal muscle atrophy pathways.
    Glass DJ
    Cancer Cell; 2005 Nov; 8(5):351-2. PubMed ID: 16286242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia.
    Acharyya S; Butchbach ME; Sahenk Z; Wang H; Saji M; Carathers M; Ringel MD; Skipworth RJ; Fearon KC; Hollingsworth MA; Muscarella P; Burghes AH; Rafael-Fortney JA; Guttridge DC
    Cancer Cell; 2005 Nov; 8(5):421-32. PubMed ID: 16286249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the signaling and mechanical functions of the dystrophin-glycoprotein complex.
    Judge LM; Haraguchiln M; Chamberlain JS
    J Cell Sci; 2006 Apr; 119(Pt 8):1537-46. PubMed ID: 16569668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The cellular effects of functional unloading and passive stretch on m. soleus of dystrophin-deficient mdx mice].
    Turtikova OV; Altaeva EG; Tarakina MV; Malashenko AM; Nemirovskaia TL; Shenkman BS
    Tsitologiia; 2008; 50(2):132-9. PubMed ID: 18540193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B signaling pathways in dystrophin-deficient skeletal muscle in response to mechanical stretch.
    Dogra C; Changotra H; Wergedal JE; Kumar A
    J Cell Physiol; 2006 Sep; 208(3):575-85. PubMed ID: 16741926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myoblast models of skeletal muscle hypertrophy and atrophy.
    Sharples AP; Stewart CE
    Curr Opin Clin Nutr Metab Care; 2011 May; 14(3):230-6. PubMed ID: 21460719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mouse dystrophin muscle promoter/enhancer drives expression of mini-dystrophin in transgenic mdx mice and rescues the dystrophy in these mice.
    Anderson CL; De Repentigny Y; Cifelli C; Marshall P; Renaud JM; Worton RG; Kothary R
    Mol Ther; 2006 Nov; 14(5):724-34. PubMed ID: 16807118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparks, signals and shock absorbers: how dystrophin loss causes muscular dystrophy.
    Batchelor CL; Winder SJ
    Trends Cell Biol; 2006 Apr; 16(4):198-205. PubMed ID: 16515861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of IGF-I in skeletal muscle mass maintenance.
    Clemmons DR
    Trends Endocrinol Metab; 2009 Sep; 20(7):349-56. PubMed ID: 19729319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The AP-1/CJUN signaling cascade is involved in muscle differentiation: implications in muscle wasting during cancer cachexia.
    Moore-Carrasco R; García-Martínez C; Busquets S; Ametller E; Barreiro E; López-Soriano FJ; Argilés JM
    FEBS Lett; 2006 Jan; 580(2):691-6. PubMed ID: 16412434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle progenitor cell proliferation during passive stretch of unweighted soleus in dystrophin deficient mice.
    Turtikova OV; Altaeva EG; Tarakina MV; Malashenko AM; Nemirovskaya TL; Shenkman BS
    J Gravit Physiol; 2007 Jul; 14(1):P95-6. PubMed ID: 18372716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin.
    Rooney JE; Welser JV; Dechert MA; Flintoff-Dye NL; Kaufman SJ; Burkin DJ
    J Cell Sci; 2006 Jun; 119(Pt 11):2185-95. PubMed ID: 16684813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle: increasing the size of the locomotor cell.
    Karagounis LG; Hawley JA
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1376-9. PubMed ID: 20541033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pivotal role of cytokines in muscle wasting during cancer.
    Argilés JM; Busquets S; López-Soriano FJ
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2036-46. PubMed ID: 16105746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms to explain wasting of muscle and fat in cancer cachexia.
    Argilés JM; López-Soriano FJ; Busquets S
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation within the cysteine-rich region of dystrophin enhances its association with β-dystroglycan and identifies a potential novel therapeutic target for skeletal muscle wasting.
    Swiderski K; Shaffer SA; Gallis B; Odom GL; Arnett AL; Scott Edgar J; Baum DM; Chee A; Naim T; Gregorevic P; Murphy KT; Moody J; Goodlett DR; Lynch GS; Chamberlain JS
    Hum Mol Genet; 2014 Dec; 23(25):6697-711. PubMed ID: 25082828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dystrobrevins in muscle and non-muscle tissues.
    Rees ML; Lien CF; Górecki DC
    Neuromuscul Disord; 2007 Feb; 17(2):123-34. PubMed ID: 17251025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy.
    Heydemann A; McNally EM
    Trends Cardiovasc Med; 2007 Feb; 17(2):55-9. PubMed ID: 17292047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing and assembly of the dystrophin glycoprotein complex.
    Allikian MJ; McNally EM
    Traffic; 2007 Mar; 8(3):177-83. PubMed ID: 17274800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.