BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16286507)

  • 1. Evolution of skeletal type e-c coupling: a novel means of controlling calcium delivery.
    Di Biase V; Franzini-Armstrong C
    J Cell Biol; 2005 Nov; 171(4):695-704. PubMed ID: 16286507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.
    Brillantes AM; Bezprozvannaya S; Marks AR
    Circ Res; 1994 Sep; 75(3):503-10. PubMed ID: 8062423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling.
    Meissner G; Lu X
    Biosci Rep; 1995 Oct; 15(5):399-408. PubMed ID: 8825041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-expression in CHO cells of two muscle proteins involved in excitation-contraction coupling.
    Takekura H; Takeshima H; Nishimura S; Takahashi M; Tanabe T; Flockerzi V; Hofmann F; Franzini-Armstrong C
    J Muscle Res Cell Motil; 1995 Oct; 16(5):465-80. PubMed ID: 8567934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The recombinant dihydropyridine receptor II-III loop and partly structured 'C' region peptides modify cardiac ryanodine receptor activity.
    Dulhunty AF; Karunasekara Y; Curtis SM; Harvey PJ; Board PG; Casarotto MG
    Biochem J; 2005 Feb; 385(Pt 3):803-13. PubMed ID: 15511220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal and cardiac ryanodine receptors bind to the Ca(2+)-sensor region of dihydropyridine receptor alpha(1C) subunit.
    Mouton J; Ronjat M; Jona I; Villaz M; Feltz A; Maulet Y
    FEBS Lett; 2001 Sep; 505(3):441-4. PubMed ID: 11576544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells.
    Protasi F; Franzini-Armstrong C; Flucher BE
    J Cell Biol; 1997 May; 137(4):859-70. PubMed ID: 9151688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle.
    Protasi F; Takekura H; Wang Y; Chen SR; Meissner G; Allen PD; Franzini-Armstrong C
    Biophys J; 2000 Nov; 79(5):2494-508. PubMed ID: 11053125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular aspects of the excitation-contraction coupling in skeletal muscle.
    Iino M
    Jpn J Physiol; 1999 Aug; 49(4):325-33. PubMed ID: 10529492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling.
    Cheng W; Altafaj X; Ronjat M; Coronado R
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19225-30. PubMed ID: 16357209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural interaction between RYRs and DHPRs in calcium release units of cardiac and skeletal muscle cells.
    Protasi F
    Front Biosci; 2002 Mar; 7():d650-8. PubMed ID: 11861217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling.
    Bers DM; Stiffel VM
    Am J Physiol; 1993 Jun; 264(6 Pt 1):C1587-93. PubMed ID: 8333507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional implications of RyR-dHPR relationships in skeletal and cardiac muscles.
    Franzini-Armstrong C
    Biol Res; 2004; 37(4):507-12. PubMed ID: 15709676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle.
    Dulhunty AF; Haarmann CS; Green D; Laver DR; Board PG; Casarotto MG
    Prog Biophys Mol Biol; 2002; 79(1-3):45-75. PubMed ID: 12225776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.
    Bannister RA
    J Exp Biol; 2016 Jan; 219(Pt 2):175-82. PubMed ID: 26792328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Ca2+ release from internal stores in cardiac and skeletal muscles.
    Wrzosek A
    Acta Biochim Pol; 2000; 47(3):705-23. PubMed ID: 11310971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle.
    Flucher BE; Franzini-Armstrong C
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8101-6. PubMed ID: 8755610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.