BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16286721)

  • 21. A genetic dissociation of learning and recall in Caenorhabditis elegans.
    Atkinson-Leadbeater K; Nuttley WM; van der Kooy D
    Behav Neurosci; 2004 Dec; 118(6):1206-13. PubMed ID: 15598130
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of gustatory plasticity due to acute nicotine exposure in the nematode Caenorhabditis elegans.
    Matsuura T; Miura H; Nishino A
    Neurosci Res; 2013 Nov; 77(3):155-61. PubMed ID: 24025430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined effect of temperature and zinc on Caenorhabditis elegans wild type and daf-21 mutant strains.
    Wang Y; Ezemaduka AN
    J Therm Biol; 2014 Apr; 41():16-20. PubMed ID: 24679967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of Caenorhabditis elegans chemotaxis by cultivation and assay temperatures.
    Adachi R; Wakabayashi T; Oda N; Shingai R
    Neurosci Res; 2008 Mar; 60(3):300-6. PubMed ID: 18192049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of oxygen intermediates in the retention time of diacetyl adaptation in the nematode Caenorhabditis elegans.
    Nishino A; Kanno R; Matsuura T
    J Exp Zool A Ecol Genet Physiol; 2013 Oct; 319(8):431-9. PubMed ID: 23733487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of distinct attractive and aversive mechanisms mediating benzaldehyde chemotaxis in Caenorhabditis elegans.
    Nuttley WM; Harbinder S; van der Kooy D
    Learn Mem; 2001; 8(3):170-81. PubMed ID: 11390637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of chemotaxis to sodium chloride and diacetyl and thermotaxis defects by microcystin-LR exposure in nematode Caenorhabditis elegans.
    Li Y; Ye H; Du M; Zhang Y; Ye B; Pu Y; Wang D
    J Environ Sci (China); 2009; 21(7):971-9. PubMed ID: 19862965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis.
    Joo HJ; Yim YH; Jeong PY; Jin YX; Lee JE; Kim H; Jeong SK; Chitwood DJ; Paik YK
    Biochem J; 2009 Jul; 422(1):61-71. PubMed ID: 19496754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulatory effect of ionizing radiation on food-NaCl associative learning: the role of gamma subunit of G protein in Caenorhabditis elegans.
    Sakashita T; Hamada N; Ikeda DD; Yanase S; Suzuki M; Ishii N; Kobayashi Y
    FASEB J; 2008 Mar; 22(3):713-20. PubMed ID: 17947388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The species, sex, and stage specificity of a Caenorhabditis sex pheromone.
    Chasnov JR; So WK; Chan CM; Chow KL
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6730-5. PubMed ID: 17416682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. C. elegans: social interactions in a "nonsocial" animal.
    Ardiel EL; Rankin CH
    Adv Genet; 2009; 68():1-22. PubMed ID: 20109657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adverse effects of metal exposure on chemotaxis towards water-soluble attractants regulated mainly by ASE sensory neuron in nematode Caenorhabditis elegans.
    Xing X; Du M; Zhang Y; Wang D
    J Environ Sci (China); 2009; 21(12):1684-94. PubMed ID: 20131599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons.
    Koga M; Ohshima Y
    J Mol Biol; 2004 Feb; 336(3):579-87. PubMed ID: 15095973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans.
    Sassa T; Murayama T; Maruyama IN
    Neurosci Lett; 2013 Oct; 555():248-52. PubMed ID: 23769685
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nematode behavior: the taste of success, the smell of danger!
    Rankin CH
    Curr Biol; 2006 Feb; 16(3):R89-91. PubMed ID: 16461270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans.
    Fujiwara M; Aoyama I; Hino T; Teramoto T; Ishihara T
    Curr Biol; 2016 Jun; 26(12):1522-1531. PubMed ID: 27265391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15.
    Sellings L; Pereira S; Qian C; Dixon-McDougall T; Nowak C; Zhao B; Tyndale RF; van der Kooy D
    Eur J Neurosci; 2013 Mar; 37(5):743-56. PubMed ID: 23351035
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Failure of Parastrongyloides trichosuri daf-7 to complement a Caenorhabditis elegans daf-7 (e1372) mutant: implications for the evolution of parasitism.
    Crook M; Grant K; Grant WN
    Int J Parasitol; 2010 Dec; 40(14):1675-83. PubMed ID: 20673766
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative assessment of pheromone-induced Dauer formation in Caenorhabditis elegans.
    Neal SJ; Kim K; Sengupta P
    Methods Mol Biol; 2013; 1068():273-83. PubMed ID: 24014369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.