These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 16286862)

  • 1. Use of an EMG-driven biomechanical model to study virtual injuries.
    Manal K; Buchanan TS
    Med Sci Sports Exerc; 2005 Nov; 37(11):1917-23. PubMed ID: 16286862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time EMG-driven virtual arm.
    Manal K; Gonzalez RV; Lloyd DG; Buchanan TS
    Comput Biol Med; 2002 Jan; 32(1):25-36. PubMed ID: 11738638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel muscle patterns for reaching after cervical spinal cord injury: a case for motor redundancy.
    Koshland GF; Galloway JC; Farley B
    Exp Brain Res; 2005 Jul; 164(2):133-47. PubMed ID: 16028034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.
    Mountjoy KC; Hashtrudi-Zaad K; Morin EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3720-5. PubMed ID: 19163520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation and intermuscular coherence of distal arm muscles during proximal muscle contraction.
    Lee SW; Landers K; Harris-Love ML
    Exp Brain Res; 2014 Mar; 232(3):739-52. PubMed ID: 24317552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proportional myoelectric control of a virtual object to investigate human efferent control.
    Gordon KE; Ferris DP
    Exp Brain Res; 2004 Dec; 159(4):478-86. PubMed ID: 15258714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relevance of the force-velocity relationship in the activation of mono- and Bi-articular muscles in slow arm movements in humans.
    Welter TG; Bobbert MF; van Bolhuis BM; Gielen SC; Rozendaal LA; Veeger DH
    Motor Control; 2000 Oct; 4(4):420-38. PubMed ID: 11021961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control processes underlying elbow flexion movements may be independent of kinematic and electromyographic patterns: experimental study and modelling.
    St-Onge N; Adamovich SV; Feldman AG
    Neuroscience; 1997 Jul; 79(1):295-316. PubMed ID: 9178885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating ultrasound-measured musculotendon parameters to subject-specific EMG-driven model to simulate voluntary elbow flexion for persons after stroke.
    Li L; Tong KY; Hu XL; Hung LK; Koo TK
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):101-9. PubMed ID: 19012998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional tuning effects during cyclical two-joint arm movements in the horizontal plane.
    Levin O; Ouamer M; Steyvers M; Swinnen SP
    Exp Brain Res; 2001 Dec; 141(4):471-84. PubMed ID: 11810141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effectiveness of stretch-shortening cycling in upper-limb extensor muscles during elite cross-country skiing with the double-poling technique.
    Zoppirolli C; Holmberg HC; Pellegrini B; Quaglia D; Bortolan L; Schena F
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1512-9. PubMed ID: 24064180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the electromyographic activity of human elbow joint muscles during slow linear flexion movements in isotorque conditions.
    Tal'nov AN; Serenko SG; Strafun SS; Kostyukov AI
    Neuroscience; 1999 Mar; 90(3):1123-36. PubMed ID: 10218811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic reactions under different motor sets.
    Castellote JM; Valls-Solé J; Sanegre MT
    Exp Brain Res; 2004 Sep; 158(1):35-42. PubMed ID: 15007585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional model to predict muscle forces and their relation to motor variances in reaching arm movements.
    Tibold R; Fazekas G; Laczko J
    J Appl Biomech; 2011 Nov; 27(4):362-74. PubMed ID: 21896947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a muscular control system in human movements.
    Kashima T; Isurugi Y; Shima M
    Biol Cybern; 2000 Feb; 82(2):123-31. PubMed ID: 10664099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.