BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 16286866)

  • 1. Muscle, ligament, and joint-contact forces at the knee during walking.
    Shelburne KB; Torry MR; Pandy MG
    Med Sci Sports Exerc; 2005 Nov; 37(11):1948-56. PubMed ID: 16286866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait.
    Shelburne KB; Pandy MG; Torry MR
    J Biomech; 2004 Mar; 37(3):313-9. PubMed ID: 14757450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern of anterior cruciate ligament force in normal walking.
    Shelburne KB; Pandy MG; Anderson FC; Torry MR
    J Biomech; 2004 Jun; 37(6):797-805. PubMed ID: 15111067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of ligament loading and anterior tibial translation in healthy and ACL-deficient knees during gait and the influence of increasing tibial slope using EMG-driven approach.
    Shao Q; MacLeod TD; Manal K; Buchanan TS
    Ann Biomed Eng; 2011 Jan; 39(1):110-21. PubMed ID: 20683675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait.
    Liu W; Maitland ME
    J Biomech; 2000 Jul; 33(7):871-9. PubMed ID: 10831762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in gastrocnemii activation at mid-to-late stance markedly affects the intact and anterior cruciate ligament deficient knee biomechanics and stability in gait.
    Sharifi M; Shirazi-Adl A
    Knee; 2021 Mar; 29():530-540. PubMed ID: 33756263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of muscle compensation on knee instability during ACL-deficient gait.
    Shelburne KB; Torry MR; Pandy MG
    Med Sci Sports Exerc; 2005 Apr; 37(4):642-8. PubMed ID: 15809564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions.
    Shelburne KB; Pandy MG
    J Biomech; 1997 Feb; 30(2):163-76. PubMed ID: 9001937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of gastrocnemius activation in knee joint biomechanics: gastrocnemius acts as an ACL antagonist.
    Adouni M; Shirazi-Adl A; Marouane H
    Comput Methods Biomech Biomed Engin; 2016; 19(4):376-85. PubMed ID: 25892616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.
    Biscarini A; Botti FM; Pettorossi VE
    Eur J Appl Physiol; 2013 Sep; 113(9):2263-73. PubMed ID: 23670482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The patella ligament insertion angle influences quadriceps usage during walking of anterior cruciate ligament deficient patients.
    Shin CS; Chaudhari AM; Dyrby CO; Andriacchi TP
    J Orthop Res; 2007 Dec; 25(12):1643-50. PubMed ID: 17593539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR; Lenhart RL; Kaiser J; Vignos MF; Thelen DG
    J Knee Surg; 2016 Feb; 29(2):99-106. PubMed ID: 26408997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational biomechanics of human knee joint in stair ascent: Muscle-ligament-contact forces and comparison with level walking.
    Makani A; Shirazi-Adl SA; Ghezelbash F
    Int J Numer Method Biomed Eng; 2022 Nov; 38(11):e3646. PubMed ID: 36054682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee.
    Ellis BJ; Lujan TJ; Dalton MS; Weiss JA
    J Orthop Res; 2006 Apr; 24(4):800-10. PubMed ID: 16514656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV
    J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model prediction of anterior cruciate ligament force during drop-landings.
    Pflum MA; Shelburne KB; Torry MR; Decker MJ; Pandy MG
    Med Sci Sports Exerc; 2004 Nov; 36(11):1949-58. PubMed ID: 15514512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee joint mechanics under quadriceps--hamstrings muscle forces are influenced by tibial restraint.
    Mesfar W; Shirazi-Adl A
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):841-8. PubMed ID: 16774800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions.
    Ali AA; Harris MD; Shalhoub S; Maletsky LP; Rullkoetter PJ; Shelburne KB
    J Biomech; 2017 May; 57():117-124. PubMed ID: 28457606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H; Shirazi-Adl A; Adouni M; Hashemi J
    J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.