BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 16286964)

  • 1. The autofluorescence of plastic materials and chips measured under laser irradiation.
    Piruska A; Nikcevic I; Lee SH; Ahn C; Heineman WR; Limbach PA; Seliskar CJ
    Lab Chip; 2005 Dec; 5(12):1348-54. PubMed ID: 16286964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection.
    Greif D; Galla L; Ros A; Anselmetti D
    J Chromatogr A; 2008 Oct; 1206(1):83-8. PubMed ID: 18657818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A study of the autofluorescence of parylene materials for microTAS applications.
    Lu B; Zheng S; Quach BQ; Tai YC
    Lab Chip; 2010 Jul; 10(14):1826-34. PubMed ID: 20431822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers.
    Vannahme C; Klinkhammer S; Lemmer U; Mappes T
    Opt Express; 2011 Apr; 19(9):8179-86. PubMed ID: 21643068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser induced autofluorescence diagnosis of bladder tumors: dependence on the excitation wavelength.
    Anidjar M; Ettori D; Cussenot O; Meria P; Desgrandchamps F; Cortesse A; Teillac P; Le Duc A; Avrillier S
    J Urol; 1996 Nov; 156(5):1590-6. PubMed ID: 8863545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing urine autofluorescence under multi-photon excitation conditions.
    Bukowski EJ; Bright FV
    Appl Spectrosc; 2004 Sep; 58(9):1101-5. PubMed ID: 15479527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastic-PDMS bonding for high pressure hydrolytically stable active microfluidics.
    Lee KS; Ram RJ
    Lab Chip; 2009 Jun; 9(11):1618-24. PubMed ID: 19458871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance.
    Shadpour H; Musyimi H; Chen J; Soper SA
    J Chromatogr A; 2006 Apr; 1111(2):238-51. PubMed ID: 16569584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear decrease of background fluorescence in polymer thin-films - a survey of materials and how they can complicate fluorescence detection in microTAS.
    Hawkins KR; Yager P
    Lab Chip; 2003 Nov; 3(4):248-52. PubMed ID: 15007454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.
    Irawan R; Tjin SC; Fang X; Fu CY
    Biomed Microdevices; 2007 Jun; 9(3):413-9. PubMed ID: 17473985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser-induced autofluorescence spectroscopy of dental caries.
    König K; Flemming G; Hibst R
    Cell Mol Biol (Noisy-le-grand); 1998 Dec; 44(8):1293-300. PubMed ID: 9874516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-assisted CO(2) laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application.
    Chung CK; Chang HC; Shih TR; Lin SL; Hsiao EJ; Chen YS; Chang EC; Chen CC; Lin CC
    Biomed Microdevices; 2010 Feb; 12(1):107-14. PubMed ID: 19830566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors.
    Irawan R; Tjin SC
    Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct femtosecond laser waveguide writing inside zinc phosphate glass.
    Fletcher LB; Witcher JJ; Troy N; Reis ST; Brow RK; Krol DM
    Opt Express; 2011 Apr; 19(9):7929-36. PubMed ID: 21643042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence spectra and images of latent fingerprints excited with a tunable laser in the ultraviolet region.
    Akiba N; Saitoh N; Kuroki K
    J Forensic Sci; 2007 Sep; 52(5):1103-6. PubMed ID: 17767656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.
    Dhouib K; Khan Malek C; Pfleging W; Gauthier-Manuel B; Duffait R; Thuillier G; Ferrigno R; Jacquamet L; Ohana J; Ferrer JL; Théobald-Dietrich A; Giegé R; Lorber B; Sauter C
    Lab Chip; 2009 May; 9(10):1412-21. PubMed ID: 19417908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.