BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16287047)

  • 1. Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers.
    He Y; Zeng S
    Chirality; 2006 Jan; 18(1):64-9. PubMed ID: 16287047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of decursin and decursinol angelate across Caco-2 and MDR-MDCK cell monolayers: in vitro models for intestinal and blood-brain barrier permeability.
    Madgula VL; Avula B; Reddy V L N; Khan IA; Khan SI
    Planta Med; 2007 Apr; 73(4):330-5. PubMed ID: 17372866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective transport and uptake of propranolol across human intestinal Caco-2 cell monolayers.
    Wang Y; Cao J; Wang X; Zeng S
    Chirality; 2010 Mar; 22(3):361-8. PubMed ID: 19575464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers.
    Hubatsch I; Ragnarsson EG; Artursson P
    Nat Protoc; 2007; 2(9):2111-9. PubMed ID: 17853866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the investigational anti-cancer drug 5,6-dimethylxanthenone-4-acetic acid and its acyl glucuronide in Caco-2 monolayers by liquid chromatography with fluorescence detection: application to transport studies.
    Zhou S; Feng X; Kestell P; Baguley BC; Paxton JW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Sep; 809(1):87-97. PubMed ID: 15282097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of simulated intestinal fluid on drug permeability estimation across Caco-2 monolayers.
    Ingels F; Beck B; Oth M; Augustijns P
    Int J Pharm; 2004 Apr; 274(1-2):221-32. PubMed ID: 15072798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport mechanisms of flavanone aglycones across Caco-2 cell monolayers and artificial PAMPA membranes.
    Kobayashi S; Nagai T; Konishi Y; Tanabe S; Morimoto K; Ogihara T
    J Pharm Pharmacol; 2012 Jan; 64(1):52-60. PubMed ID: 22150672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Absorption of coptisine chloride and berberrubine across human intestinal epithelial by using human Caco-2 cell monolayers].
    Ma L; Yang XW
    Zhongguo Zhong Yao Za Zhi; 2007 Dec; 32(23):2523-7. PubMed ID: 18330249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of parthenolide across human intestinal cells (Caco-2).
    Khan SI; Abourashed EA; Khan IA; Walker LA
    Planta Med; 2003 Nov; 69(11):1009-12. PubMed ID: 14735438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Absorption of papaverine, laudanosine and cepharanthine across human intestine by using human Caco-2 cells monolayers model].
    Ma L; Yang XW
    Yao Xue Xue Bao; 2008 Feb; 43(2):202-7. PubMed ID: 18507350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Dependent passive and active transport of acidic drugs across Caco-2 cell monolayers.
    Neuhoff S; Ungell AL; Zamora I; Artursson P
    Eur J Pharm Sci; 2005 Jun; 25(2-3):211-20. PubMed ID: 15911216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers.
    He Y; Zeng S
    J Pharm Pharmacol; 2005 Oct; 57(10):1297-303. PubMed ID: 16259758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of conjugated linoleic acid on transepithelial calcium transport and mediators of paracellular permeability in human intestinal-like Caco-2 cells.
    Jewell C; Cusack S; Cashman KD
    Prostaglandins Leukot Essent Fatty Acids; 2005 Mar; 72(3):163-71. PubMed ID: 15664300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption of poorly water soluble drugs subject to apical efflux using phospholipids as solubilizers in the Caco-2 cell model.
    Kapitza SB; Michel BR; van Hoogevest P; Leigh ML; Imanidis G
    Eur J Pharm Biopharm; 2007 Apr; 66(1):146-58. PubMed ID: 17071065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo.
    Wetterich U; Spahn-Langguth H; Mutschler E; Terhaag B; Rösch W; Langguth P
    Pharm Res; 1996 Apr; 13(4):514-22. PubMed ID: 8710739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Caco-2 cell monolayer drug transport properties by cassette dosing using UV/fluorescence HPLC.
    Palmgrén JJ; Mönkkönen J; Jukkola E; Niva S; Auriola S
    Eur J Pharm Biopharm; 2004 Mar; 57(2):319-28. PubMed ID: 15018991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transport mechanism of swertiamain metabolite across Caco-2 model].
    Tang C; Zhang Y; Zhang T; Tian C; Liu C
    Zhongguo Zhong Yao Za Zhi; 2009 Sep; 34(17):2258-60. PubMed ID: 19943498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the role of different drug transport routes in permeability screening.
    Matsson P; Bergström CA; Nagahara N; Tavelin S; Norinder U; Artursson P
    J Med Chem; 2005 Jan; 48(2):604-13. PubMed ID: 15658873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of HO-1-u-1 cell line as an in vitro model for sublingual drug delivery involving passive diffusion--Initial validation studies.
    Wang Y; Zuo Z; Lee KK; Chow MS
    Int J Pharm; 2007 Apr; 334(1-2):27-34. PubMed ID: 17079100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of angiotensin peptides across the Caco-2 monolayer.
    Chua HL; Jois S; Sim MK; Go ML
    Peptides; 2004 Aug; 25(8):1327-38. PubMed ID: 15350701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.