These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 16287116)

  • 41. Molecular principles of the interactions of disordered proteins.
    Mészáros B; Tompa P; Simon I; Dosztányi Z
    J Mol Biol; 2007 Sep; 372(2):549-61. PubMed ID: 17681540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intrinsic structural disorder of DF31, a Drosophila protein of chromatin decondensation and remodeling activities.
    Szollosi E; Bokor M; Bodor A; Perczel A; Klement E; Medzihradszky KF; Tompa K; Tompa P
    J Proteome Res; 2008 Jun; 7(6):2291-9. PubMed ID: 18484763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. AP7, a partially disordered pseudo C-RING protein, is capable of forming stabilized aragonite in vitro.
    Amos FF; Evans JS
    Biochemistry; 2009 Feb; 48(6):1332-9. PubMed ID: 19159266
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The interplay between structure and function in intrinsically unstructured proteins.
    Tompa P
    FEBS Lett; 2005 Jun; 579(15):3346-54. PubMed ID: 15943980
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements.
    Navea S; Tauler R; Goormaghtigh E; de Juan A
    Proteins; 2006 May; 63(3):527-41. PubMed ID: 16456850
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane-induced conformational change of alpha1-acid glycoprotein characterized by vacuum-ultraviolet circular dichroism spectroscopy.
    Matsuo K; Namatame H; Taniguchi M; Gekko K
    Biochemistry; 2009 Sep; 48(38):9103-11. PubMed ID: 19702310
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energetic basis of uncoupling folding from binding for an intrinsically disordered protein.
    Drobnak I; De Jonge N; Haesaerts S; Vesnaver G; Loris R; Lah J
    J Am Chem Soc; 2013 Jan; 135(4):1288-94. PubMed ID: 23289531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of protein-folding pathways by reduced-space modeling.
    Kmiecik S; Kolinski A
    Proc Natl Acad Sci U S A; 2007 Jul; 104(30):12330-5. PubMed ID: 17636132
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling electron paramagnetic resonance spectroscopy.
    Morin B; Bourhis JM; Belle V; Woudstra M; Carrière F; Guigliarelli B; Fournel A; Longhi S
    J Phys Chem B; 2006 Oct; 110(41):20596-608. PubMed ID: 17034249
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Understanding the role of the topology in protein folding by computational inverse folding experiments.
    Mucherino A; Costantini S; di Serafino D; D'Apuzzo M; Facchiano A; Colonna G
    Comput Biol Chem; 2008 Aug; 32(4):233-9. PubMed ID: 18479970
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure/function of KRAB repression domains: structural properties of KRAB modules inferred from hydrodynamic, circular dichroism, and FTIR spectroscopic analyses.
    Mannini R; Rivieccio V; D'Auria S; Tanfani F; Ausili A; Facchiano A; Pedone C; Grimaldi G
    Proteins; 2006 Mar; 62(3):604-16. PubMed ID: 16385564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific interactions for ab initio folding of protein terminal regions with secondary structures.
    Yang Y; Zhou Y
    Proteins; 2008 Aug; 72(2):793-803. PubMed ID: 18260109
    [TBL] [Abstract][Full Text] [Related]  

  • 54. pH-induced changes in intrinsically disordered proteins.
    Smith MD; Jelokhani-Niaraki M
    Methods Mol Biol; 2012; 896():223-31. PubMed ID: 22821527
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preformed structural elements feature in partner recognition by intrinsically unstructured proteins.
    Fuxreiter M; Simon I; Friedrich P; Tompa P
    J Mol Biol; 2004 May; 338(5):1015-26. PubMed ID: 15111064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins.
    Bustos DM; Iglesias AA
    Proteins; 2006 Apr; 63(1):35-42. PubMed ID: 16444738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints.
    Marsh JA; Forman-Kay JD
    J Mol Biol; 2009 Aug; 391(2):359-74. PubMed ID: 19501099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Circular dichroism and its use in protein-folding studies.
    Clarke DT
    Methods Mol Biol; 2011; 752():59-72. PubMed ID: 21713631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy.
    Belle V; Rouger S; Costanzo S; Liquière E; Strancar J; Guigliarelli B; Fournel A; Longhi S
    Proteins; 2008 Dec; 73(4):973-88. PubMed ID: 18536007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smoothing molecular interactions: the "kinetic buffer" effect of intrinsically disordered proteins.
    Huang Y; Liu Z
    Proteins; 2010 Dec; 78(16):3251-9. PubMed ID: 20949632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.