These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Hydrogen storage in engineered carbon nanospaces. Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen storage in high surface area carbons: experimental demonstration of the effects of nitrogen doping. Xia Y; Walker GS; Grant DM; Mokaya R J Am Chem Soc; 2009 Nov; 131(45):16493-9. PubMed ID: 19852461 [TBL] [Abstract][Full Text] [Related]
5. High hydrogen storage capacity of porous carbons prepared by using activated carbon. Wang H; Gao Q; Hu J J Am Chem Soc; 2009 May; 131(20):7016-22. PubMed ID: 19405471 [TBL] [Abstract][Full Text] [Related]
6. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation. Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191 [TBL] [Abstract][Full Text] [Related]
7. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. Yang Z; Xia Y; Mokaya R J Am Chem Soc; 2007 Feb; 129(6):1673-9. PubMed ID: 17243684 [TBL] [Abstract][Full Text] [Related]
8. Carbide-derived carbons: a comparative study of porosity based on small-angle scattering and adsorption isotherms. Laudisio G; Dash RK; Singer JP; Yushin G; Gogotsi Y; Fischer JE Langmuir; 2006 Oct; 22(21):8945-50. PubMed ID: 17014139 [TBL] [Abstract][Full Text] [Related]
10. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping. Yang Z; Xia Y; Sun X; Mokaya R J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467 [TBL] [Abstract][Full Text] [Related]
11. DFT-based prediction of high-pressure H2 adsorption on porous carbons at ambient temperatures from low-pressure adsorption data measured at 77 K. Jagiello J; Ansón A; Martínez MT J Phys Chem B; 2006 Mar; 110(10):4531-4. PubMed ID: 16526679 [TBL] [Abstract][Full Text] [Related]
12. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. Korenblit Y; Rose M; Kockrick E; Borchardt L; Kvit A; Kaskel S; Yushin G ACS Nano; 2010 Mar; 4(3):1337-44. PubMed ID: 20180559 [TBL] [Abstract][Full Text] [Related]
14. NMR methods for characterizing the pore structures and hydrogen storage properties of microporous carbons. Anderson RJ; McNicholas TP; Kleinhammes A; Wang A; Liu J; Wu Y J Am Chem Soc; 2010 Jun; 132(25):8618-26. PubMed ID: 20524615 [TBL] [Abstract][Full Text] [Related]
15. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks. Kuchta B; Firlej L; Mohammadhosseini A; Boulet P; Beckner M; Romanos J; Pfeifer P J Am Chem Soc; 2012 Sep; 134(36):15130-7. PubMed ID: 22897685 [TBL] [Abstract][Full Text] [Related]
17. The study of controlling pore size on electrospun carbon nanofibers for hydrogen adsorption. Im JS; Park SJ; Kim TJ; Kim YH; Lee YS J Colloid Interface Sci; 2008 Feb; 318(1):42-9. PubMed ID: 17988675 [TBL] [Abstract][Full Text] [Related]
19. Hydrogen storage in pure and Li-doped carbon nanopores: combined effects of concavity and doping. Cabria I; López MJ; Alonso JA J Chem Phys; 2008 Apr; 128(14):144704. PubMed ID: 18412468 [TBL] [Abstract][Full Text] [Related]
20. Hierarchical nanostructured carbons with meso-macroporosity: design, characterization, and applications. Fang B; Kim JH; Kim MS; Yu JS Acc Chem Res; 2013 Jul; 46(7):1397-406. PubMed ID: 23270494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]