These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16287279)

  • 1. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage.
    Cao H; Qian X; Wang C; Ma X; Yin J; Zhu Z
    J Am Chem Soc; 2005 Nov; 127(46):16024-5. PubMed ID: 16287279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating a twin-dependent chemical activity of hierarchical copper sulfide nanocages.
    Sun S; Deng D; Song X; Yang Z
    Phys Chem Chem Phys; 2013 Oct; 15(38):15964-70. PubMed ID: 23959074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals.
    Niu W; Zheng S; Wang D; Liu X; Li H; Han S; Chen J; Tang Z; Xu G
    J Am Chem Soc; 2009 Jan; 131(2):697-703. PubMed ID: 19102696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of hollow nanocrystals through the nanoscale Kirkendall effect.
    Yin Y; Rioux RM; Erdonmez CK; Hughes S; Somorjai GA; Alivisatos AP
    Science; 2004 Apr; 304(5671):711-4. PubMed ID: 15118156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of Cu2O nanocrystals into hollow Cu2-xSe nanocages with the preservation of morphologies.
    Cao H; Qian X; Zai J; Yin J; Zhu Z
    Chem Commun (Camb); 2006 Nov; (43):4548-50. PubMed ID: 17283814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monocrystalline spinel nanotube fabrication based on the Kirkendall effect.
    Jin Fan H; Knez M; Scholz R; Nielsch K; Pippel E; Hesse D; Zacharias M; Gösele U
    Nat Mater; 2006 Aug; 5(8):627-31. PubMed ID: 16845423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facet-dependent properties of polyhedral nanocrystals.
    Huang MH; Rej S; Hsu SC
    Chem Commun (Camb); 2014 Feb; 50(14):1634-44. PubMed ID: 24406546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow boron nitride (BN) nanocages and BN-nanocage-encapsulated nanocrystals.
    Zhu YC; Bando Y; Yin LW; Golberg D
    Chemistry; 2004 Aug; 10(15):3667-72. PubMed ID: 15281150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facet-Controlled Synthetic Strategy of Cu
    Shang Y; Guo L
    Adv Sci (Weinh); 2015 Oct; 2(10):1500140. PubMed ID: 27980909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facet-dependent catalytic activity of Cu2O nanocrystals in the one-pot synthesis of 1,2,3-triazoles by multicomponent click reactions.
    Chanda K; Rej S; Huang MH
    Chemistry; 2013 Nov; 19(47):16036-43. PubMed ID: 24127396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedra.
    Yin Y; Erdonmez C; Aloni S; Alivisatos AP
    J Am Chem Soc; 2006 Oct; 128(39):12671-3. PubMed ID: 17002360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of aqueous growth of CdTe nanocrystals to fabricate colloidally stable one-dimensional nanostructures.
    Zhang H; Wang D; Yang B; Möhwald H
    J Am Chem Soc; 2006 Aug; 128(31):10171-80. PubMed ID: 16881647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals.
    Huang X; Tang S; Zhang H; Zhou Z; Zheng N
    J Am Chem Soc; 2009 Oct; 131(39):13916-7. PubMed ID: 19743854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous synthesis of organic-inorganic hybridized cubic nanoassemblies of octahedral cerium oxide nanocrystals and hexanedioic acid.
    Takami S; Ohara S; Adschiri T; Wakayama Y; Chikyow T
    Dalton Trans; 2008 Oct; (40):5442-6. PubMed ID: 19082025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of faceted and cubic Ag2S nanocrystals in aqueous solutions.
    Dong L; Chu Y; Liu Y; Li L
    J Colloid Interface Sci; 2008 Jan; 317(2):485-92. PubMed ID: 17945251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals.
    Jun YW; Casula MF; Sim JH; Kim SY; Cheon J; Alivisatos AP
    J Am Chem Soc; 2003 Dec; 125(51):15981-5. PubMed ID: 14677990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidating the effect of additives on the growth and stability of Cu2O surfaces via shape transformation of pre-grown crystals.
    Siegfried MJ; Choi KS
    J Am Chem Soc; 2006 Aug; 128(32):10356-7. PubMed ID: 16895387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating crystal orientation in nanoscale cylindrical pores by stereochemical inhibition.
    Hamilton BD; Weissbuch I; Lahav M; Hillmyer MA; Ward MD
    J Am Chem Soc; 2009 Feb; 131(7):2588-96. PubMed ID: 19053471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell and hollow nanocrystal formation via small molecule surface photodissociation; Ag@Ag2Se as an example.
    Tan H; Li S; Fan WY
    J Phys Chem B; 2006 Aug; 110(32):15812-6. PubMed ID: 16898730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance energy transfer from beta-cyclodextrin-capped ZnO:MgO nanocrystals to included Nile Red guest molecules in aqueous media.
    Rakshit S; Vasudevan S
    ACS Nano; 2008 Jul; 2(7):1473-9. PubMed ID: 19206317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.