These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 16287285)
1. Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. Sudo Y; Furutani Y; Wada A; Ito M; Kamo N; Kandori H J Am Chem Soc; 2005 Nov; 127(46):16036-7. PubMed ID: 16287285 [TBL] [Abstract][Full Text] [Related]
2. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284 [TBL] [Abstract][Full Text] [Related]
3. FTIR spectroscopy of the O photointermediate in pharaonis phoborhodopsin. Furutani Y; Iwamoto M; Shimono K; Wada A; Ito M; Kamo N; Kandori H Biochemistry; 2004 May; 43(18):5204-12. PubMed ID: 15122886 [TBL] [Abstract][Full Text] [Related]
4. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618 [TBL] [Abstract][Full Text] [Related]
5. An amino acid residue (S201) in the retinal binding pocket regulates the photoreaction pathway of phoborhodopsin. Dai G; Zhang Y; Tamogami J; Demura M; Kamo N; Kandori H; Iwasa T Biochemistry; 2011 Aug; 50(33):7177-83. PubMed ID: 21774470 [TBL] [Abstract][Full Text] [Related]
6. FTIR spectroscopy of the complex between pharaonis phoborhodopsin and its transducer protein. Furutani Y; Sudo Y; Kamo N; Kandori H Biochemistry; 2003 May; 42(17):4837-42. PubMed ID: 12718524 [TBL] [Abstract][Full Text] [Related]
7. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891 [TBL] [Abstract][Full Text] [Related]
8. Low-temperature FTIR study of Gloeobacter rhodopsin: presence of strongly hydrogen-bonded water and long-range structural protein perturbation upon retinal photoisomerization. Hashimoto K; Choi AR; Furutani Y; Jung KH; Kandori H Biochemistry; 2010 Apr; 49(15):3343-50. PubMed ID: 20230053 [TBL] [Abstract][Full Text] [Related]
9. FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Kawanabe A; Furutani Y; Jung KH; Kandori H Biochemistry; 2006 Apr; 45(14):4362-70. PubMed ID: 16584171 [TBL] [Abstract][Full Text] [Related]
10. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Herbst J; Heyne K; Diller R Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649 [TBL] [Abstract][Full Text] [Related]
11. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
12. Vibrational modes of the protonated Schiff base in pharaonis phoborhodopsin. Shimono K; Furutani Y; Kamo N; Kandori H Biochemistry; 2003 Jul; 42(25):7801-6. PubMed ID: 12820889 [TBL] [Abstract][Full Text] [Related]
13. Structural changes in the O-decay accelerated mutants of pharaonis phoborhodopsin. Sudo Y; Furutani Y; Iwamoto M; Kamo N; Kandori H Biochemistry; 2008 Mar; 47(9):2866-74. PubMed ID: 18247579 [TBL] [Abstract][Full Text] [Related]
14. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen bonding alteration of Thr-204 in the complex between pharaonis phoborhodopsin and its transducer protein. Sudo Y; Furutani Y; Shimono K; Kamo N; Kandori H Biochemistry; 2003 Dec; 42(48):14166-72. PubMed ID: 14640684 [TBL] [Abstract][Full Text] [Related]
16. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
17. Methyl substituents at the 11 or 12 position of retinal profoundly and differentially affect photochemistry and signalling activity of rhodopsin. Verhoeven MA; Bovee-Geurts PH; de Groot HJ; Lugtenburg J; DeGrip WJ J Mol Biol; 2006 Oct; 363(1):98-113. PubMed ID: 16962138 [TBL] [Abstract][Full Text] [Related]
18. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin. Ikeda D; Furutani Y; Kandori H Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036 [TBL] [Abstract][Full Text] [Related]
19. FTIR studies of the photoactivation processes in squid retinochrome. Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417 [TBL] [Abstract][Full Text] [Related]
20. Internal water molecules of archaeal rhodopsins (Review). Furutani Y; Kandori H Mol Membr Biol; 2002; 19(4):257-65. PubMed ID: 12512772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]