BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 16287285)

  • 21. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy.
    Kandori H; Kinoshita N; Yamazaki Y; Maeda A; Shichida Y; Needleman R; Lanyi JK; Bizounok M; Herzfeld J; Raap J; Lugtenburg J
    Biochemistry; 1999 Jul; 38(30):9676-83. PubMed ID: 10423246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y; Shichida Y; Kandori H
    Biochemistry; 2003 Aug; 42(32):9619-25. PubMed ID: 12911303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of Asn105 with the retinal chromophore during photoisomerization of pharaonis phoborhodopsin.
    Kandori H; Shimono K; Shichida Y; Kamo N
    Biochemistry; 2002 Apr; 41(14):4554-9. PubMed ID: 11926816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sub-5-fs real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization.
    Kobayashi T; Yabushita A; Saito T; Ohtani H; Tsuda M
    Photochem Photobiol; 2007; 83(2):363-8. PubMed ID: 17132067
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII.
    Ito M; Sudo Y; Furutani Y; Okitsu T; Wada A; Homma M; Spudich JL; Kandori H
    Biochemistry; 2008 Jun; 47(23):6208-15. PubMed ID: 18479149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protein-protein interaction of a Pharaonis halorhodopsin mutant forming a complex with Pharaonis halobacterial transducer protein II detected by Fourier-transform infrared spectroscopy.
    Furutani Y; Ito M; Sudo Y; Kamo N; Kandori H
    Photochem Photobiol; 2008; 84(4):874-9. PubMed ID: 18346088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature-dependent interactions between photoactivated pharaonis phoborhodopsin and its transducer.
    Kamada K; Furutani Y; Sudo Y; Kamo N; Kandori H
    Biochemistry; 2006 Apr; 45(15):4859-66. PubMed ID: 16605253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constraints of the 9-methyl group binding pocket of the rhodopsin chromophore probed by 9-halogeno substitution.
    Wang Y; Bovee-Geurts PH; Lugtenburg J; DeGrip WJ
    Biochemistry; 2004 Nov; 43(46):14802-10. PubMed ID: 15544351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-bound water molecules in primate red- and green-sensitive visual pigments.
    Katayama K; Furutani Y; Imai H; Kandori H
    Biochemistry; 2012 Feb; 51(6):1126-33. PubMed ID: 22260165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton release group of pharaonis phoborhodopsin revealed by ATR-FTIR spectroscopy.
    Kitade Y; Furutani Y; Kamo N; Kandori H
    Biochemistry; 2009 Feb; 48(7):1595-603. PubMed ID: 19178155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes of the complex between pharaonis phoborhodopsin and its cognate transducer upon formation of the M photointermediate.
    Furutani Y; Kamada K; Sudo Y; Shimono K; Kamo N; Kandori H
    Biochemistry; 2005 Mar; 44(8):2909-15. PubMed ID: 15723533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unique Photochemistry Observed in a New Microbial Rhodopsin.
    Kataoka C; Inoue K; Katayama K; Béjà O; Kandori H
    J Phys Chem Lett; 2019 Sep; 10(17):5117-5121. PubMed ID: 31433641
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deactivation of rhodopsin in the transition from the signaling state meta II to meta III involves a thermal isomerization of the retinal chromophore C[double bond]D.
    Vogel R; Siebert F; Mathias G; Tavan P; Fan G; Sheves M
    Biochemistry; 2003 Aug; 42(33):9863-74. PubMed ID: 12924935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assignment of the vibrational modes of the chromophores of iodopsin and bathoiodopsin: low-temperature fourier transform infrared spectroscopy of 13C- and 2H-labeled iodopsins.
    Hirano T; Fujioka N; Imai H; Kandori H; Wada A; Ito M; Shichida Y
    Biochemistry; 2006 Jan; 45(4):1285-94. PubMed ID: 16430225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya.
    Jung KH
    Photochem Photobiol; 2007; 83(1):63-9. PubMed ID: 16968113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shedding new light on retinal protein photochemistry.
    Wand A; Gdor I; Zhu J; Sheves M; Ruhman S
    Annu Rev Phys Chem; 2013; 64():437-58. PubMed ID: 23331307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.